Supporting Information

for

Carbon Monoxide Protonation in Condensed Phases and Bonding to Surface

Superacidic Brønsted Centers

Evgenii S Stoyanov*a,b and Sergei E. Malykhin^{b,c}

^a Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia

^b Department of Natural Science, National Research University - Novosibirsk State University, Novosibirsk 630090, Russia

^c Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia

Co	ntent	Page No.
1.	Supplemental figures	S2
2.	Supplemental Tables	S5
3.	Calculations	S6
	3.1 Estimation of the energy of L-H+CO and COH+-L compounds and	
	barrier for proton transfer from the Bronsted acid to the CO molecule	S6
	3.2 Scan of the potential energy surface when CO approaching to ArH^+	
	via C atom	S8
	3.3 Evaluation of the different functional effect, such as B3LYP, M06,	
	PW91, on the vibration frequencies of H ⁺ CO and COH ⁺ cations	S8
	3.4. Others	S9

1. Supplemental Figures

Figure S1. IR spectra of the $H{F_{11}}$ acid: a powder precipitated from liquid HCl with mostly crystalline structure (red) and the sublimed film, mostly amorphous (blue). Their difference (green) shows that the bands at 1624/1602, 914 and 646 cm⁻¹ corresponding to bridged hydrogen vibrations differ substantially. vCH frequencies of the ${F_{11}}$ anion (left) at 3000–3500 cm⁻¹ also differ, pointing to their differences in bonding with a proton. The B–B and B–F stretches of the ${F_{11}}$ anion are ~1280–1300 cm⁻¹.

Figure S2. IR spectra of the $H{Cl_{11}}$ acid: red is the powder precipitated from liquid HCl and mostly crystalline, studied by X-ray analysis; blue is sublimed film. vCH frequencies of the $\{Cl_{11}\}^-$ anion are shown in the inset; (b) the B–B and B–Cl stretches of the $\{Cl_{11}\}^-$ anion are in the range 1125–960 cm⁻¹, and strong broad adsorption corresponding to H atom vibrations is at 1250–400 cm⁻¹.

Figure S3. An IR spectrum of the equilibrium mixture of IIb \leftrightarrow OIIb, which was consumed within the first minute of the reaction with CH₃Cl. The spectrum was obtained as a difference of the spectra of compounds II and OII before and 1 min after injection of gaseous CH₃Cl. Subtraction was carried out with full compensation of the absorption of the {F₁₁⁻} anion and methyl chloride. Negative absorption corresponds to the formed CH₃CO⁺.

Figure S4. Optimized structures of $OC \cdot H\{F_{11}\}$ isomers "a" (left) and "c" (right) at the B3LYP/6-311g(df,p) level of theory.

Figure S5. Correlation between vCO of compounds Ia, Ib, and Ic and that of the corresponding OIa, OIb, and OIc compounds.

Figure S6 Dependence of the intensity of the band ν_{as} HCO at 1774 cm⁻¹ of the type OII cation COH⁺ on intensity of ν_{as} HCO absorption at 2810 cm⁻¹ of the type II cation.

Figure S7. The kinetics of formation of the Ic compound (dependence of the intensity of its vCO band at 2260 cm⁻¹ on the duration of absorption of CO by the surface of $H\{Cl_{11}\}$).

2. Supplemental Tables

Table S1. Calculated IR frequencies, intrinsic frequencies and C–O/C–H distances for optimized (by the B3LYP/cc-pVQZ level of theory) structures of COH⁺…L cations, analogs of the II type compounds (frequencies in cm^{-1} are rounded to integer values).

Cation	vasHCO/vCH	vOHL	v _s HCO/vCO	v _i CH	v _i CO	R _{C···O,} Å	R _{C…H,} Á
		Bridged H					
OCH ⁺	3206.6	-	2266.5	3103	2407	1.1004	1.0950
OCH⁺…He	3162	-	2259	3056	2406	1.1005	1.0981
OCH ⁺ ···Ne	3108	-	2249	2998	2404	1.1007	1.1021
OCH ⁺ ····Ar	2874	-	2178	2738	2396	1.1017	1.1214
$OCH^+ \cdots \{F_{11}^-\}_{(a)}$	2786	-	2120			1.1102	1.1216
$OCH^+ - \{F_{11}^-\}_{(b)}$	-	1864	2515			1.1094	1.1640
$OCH^+ - \{F_{11}^-\}_{(c)}$	-	1587	2441			1.1094	1.1991

Table S2. Calculated CO stretches and C–O distances for optimized (by the B3LYP/cc-pVQZ level of theory) structures of LH⁺···(CO) compounds, analogs of I/OI-type compounds (frequencies in cm⁻¹ are rounded to the integer values).

Compound	vCO	R _{C···O,} Å	Notes
CO _{gas}	2214	1.12375	Reference
$H_2OH^+\cdots CO$	2321	1.1125	I type
$SO_2H^+\cdots CO$	2325	1.1123	
$C_2H_3^+\cdots CO$	2297	1.1146	
H ₂ OH ⁺ …OC	2131	1.1341	OI type
HFH ⁺ …OC	2102	1.1406	

Table S3. Calculated IR frequencies, intrinsic frequencies (v_i), and C–O/C–H distances for optimized (by the B3LYP/cc-pVQZ level of theory) structures of COH⁺… L cations, analogs of OII-type compounds (frequencies in cm⁻¹ are rounded to the integer values).

Cation	νCH	vOHL	vCO	v _i CH	viCO	R _{C···O,} Å	R _{O…H,} Á
		Bridged H					
COH ⁺	3407		1965	3103	2407	1.1529	0.9948
COH+He	3070		1978	3956	2406	1.1510	1.0122
COH+Ne	2919		1984	2998	2404	1.1502	1.0216
CO-H ⁺ -Ar		1758	2198	2738	2396	1.1466	1.0968
CO-H ⁺ -FH		1612	2102			1.1406	1.2692

3. Calculations

3.1. Estimation of the energy of L–H⁺CO and COH⁺–L compounds and barrier for proton transfer from the Bronsted acid to the CO molecule.

To make the accurate estimation of the energy of H⁺CO/COH⁺ cations binding with basic molecules, the CBS-QB3 quantum-chemical method was applied. It is a Complete Basis Set (CBS) developed by George Peterson and coworkers [J.A. Montgomery, M.J. Frisch, J.W. Ochterski, and G.A. Petersson, J. Chem. Phys. 110 (1999) 2822-2827]. The several single-point energies were extrapolated in order to get the best estimate of the total energy. It is hard to compute due to an incomplete electron correlation energy account and finite size of the basis set. The CBS-QB3 calculations were performed with the Gaussian 09 software [Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009]. The results are shown in Table 1.

Table S4.	Calculated enthalpies	in kJ/mol) of the	H ⁺ CO/H ⁺ OC	binding with	various ligand	ls, L (bas	sicity
of Ar and	$\{F_{11}^{-}\}$ is very close).						

	Не	Ne	Ar	HF	C_2H_2	SO ₂	H ₂ O
L–H ⁺ CO	-1.8	-6.0	-19.7	-67.4	-84.4	-103.2	-157.1
L–H ⁺ OC	-7.3	-15.3	-51.2	-135.9	-229.6	-234.2	-292.2

Figure S7. Correlation between binding enthalpies of HCO⁺ and HOC⁺ (kJ/mol).

According to CBS-QB3 calculation, the ArH⁺ interaction with CO with the formation of Ar..H⁺CO, is highly exothermic – 234.4 kJ/mol. It is expected that the barrier of proton transfer should be very low, because of perfect energy compensation between the breaking of the Ar-H bond and formation of the C-H bond. In fact, the scan of Potential Energy Surface (PES) along Ar-H distance shows no energetic barrier. The ArH⁺ acid is the best model to describe the interaction of $\{F_{11}^{-}\}H^+$ acid with CO molecules, because of comparable basicity of Ar and $\{F_{11}^{-}\}$ anion. Therefore, it can be expected that in case of a real $\{F_{11}^{-}\}H^+$ acid the noticeable barrier to CO protonation also does not exist.

Figure S8. Relaxed molecule PES scan along the Ar-H distance as CO molecule approaching to the ArH⁺ cation.

3.3. Evaluation of the different functional effect, such as B3LYP, M06, PW91, on the vibration frequencies of H⁺CO and COH⁺ cations

	SVWN	PW91	B3PW91	B3LYP	B2PLYP	M06L	M06	M06-2X
vCH	3111.37	3144.35	3216.77	3224.97	3217.49	3206.77	3141.75	3261.86
νCO	2223.52	2188.84	2273.37	2265.78	2204.68	2254.12	2279.68	2337.55
δНСО	819.49	830.79	867.62	867.21	858.30	894.56	901.96	887.14

Table S5. IR frequencies of H⁺CO calculated with various DFT functionals.

Table S6. IR frequencies of COH⁺ calculated with various DFT functionals.

	SVWN	PW91	B3PW91	B3LYP	B2PLYP	M06L	M06	M06-2X
vOH	3282.61	3316.13	3436.24	3401.31	3425.90	3456.46	3464.87	3449.34
vCO	1942.93	1891.89	1970.51	1965.08	1948.20	1982.48	2001.28	2009.54
δНСО	284.98	215.26	200.93	184.48	160.77	256.91	259.65	280.86

3.4. Others

Example of the GAMESS US input for DFT calculation for Ar...H⁺CO cation. It shows all parameters required to reproduce results in the present Manuscript. Note that DFTTYP=B3LYPV1R selected for the convenience if one wants to reproduce results using Gaussian 09 software.

```
$SYSTEM TIMLIM=1000 MWORDS=50 MEMDDI=30 $END
$CONTRL SCFTYP=RHF
RUNTYP=OPTIMIZE EXETYP=RUN
MULT=1 ICHARG=1 ISPHER=1
 DFTTYP=B3LYPV1R
 COORD=UNIQUE NZVAR=5
$END
$DFT SWOFF=0.0 JANS=2 $END
$GUESS GUESS=HUCKEL $END
$SCF DIIS=.TRUE. SHIFT=.T. ETHRSH=0.1 SWDIIS=0.0 $END
$FORCE RDHESS=.F. DECOMP=.T. PURIFY=.T. $END
$ZMAT IZMAT(1)=1,1,2, 1,2,3, 1,3,4, 5,1,2,3, 5,2,3,4 $END
$LIBE APTS(1)=1.0,0.0,0.0, 1.0,0.0,0.0 $END
$STATPT NPRT=-1 HSSEND=.T. $END
$BASIS GBASIS=CCO $END
$DATA
COH+
CNV 4
0
           8.0 0.000000000
                                0.000000000 -1.0958457359
           6.0 -0.000000000
С
                                0.000000000 0.0057741388
           1.0 -0.000000000 0.00000000
Η
                                              1.1281379068
AR
          18.0 0.000000000 0.00000000 3.2020894711
$END
```

Optimized geometries at B3LYP/cc-VQZ level (Cartesian coordinates, A) and total energies (a.u.) for the L+HOC and L+HCO cations are listed below.

СОН	E = -113.53933	77	
С	0.000000000	0.0000000000	-0.0367682523
0	0.000000000	0.0000000000	1.1161509183
Н	0.000000000	0.0000000000	2.1109823723
COH+He	E = -116.45925	64	
С	0.000000000	0.0000000000	-0.0384038391
0	-0.000000000	0.0000000000	-1.1894442666
Н	-0.000000000	0.0000000000	-2.2016418937
HE	0.0000000000	0.0000000000	-3.5924505611
COH+Ne	E = -242.52344	73	
С	-0.000000000	0.0000000000	-0.1285337571
0	0.000000000	0.0000000000	-1.2787285725

H NE	0.000000000 -0.0000000000	0.0000000000 0.0000000000	-2.3003608789 -3.8294097712
COH+Ar C O H AR	E = -641.1232 0.000000000 -0.000000000 -0.000000000 0.00000000	020 0.0000000000 0.000000000 0.000000000	-0.0619742336 -1.2085427880 -2.3053465642 -3.9885226262
COH+H ₂ O O C H H H O	E = -190.1267 -0.0212294787 0.0077769515 0.0090125104 -0.2729072033 -0.2729072033 0.0796852741	176 0.7968781004 1.9306478553 -0.8434817059 -2.2612213575 -2.2612213575 -1.8462793182	0.0000000000 0.000000000 0.000000000 -0.8091732915 0.8091732915 0.000000000
HCO+ O C H	E = -113.6011 0.000000000 0.000000000 0.0000000000	750 0.0000000000 0.000000000 0.0000000000	-1.1004597675 -0.0000946106 1.0948615508
HCO+He O C H HE	E = -116.5176 -0.0000000000 0.000000000 0.0000000000	347 0.0000000000 0.000000000 0.000000000 0.000000	-1.0993978890 0.0011503476 1.0992557025 2.9421918768
HCO+Ne O C H NE	E = -242.5802 -0.000000000 0.000000000 0.000000000 -0.00000000	384 0.0000000000 0.000000000 0.000000000 0.000000	-1.0098347701 0.0908763478 1.1929382361 3.0746151215
HCO+Ar O C H AR	E = -641.1728 -0.000000000 0.000000000 0.000000000 -0.00000000	738 0.0000000000 0.000000000 0.000000000 0.000000	-1.1005394329 0.0011891801 1.1226302885 3.2054850223
HCO+H ₂ O O C H H H O	E = -190.13752 -0.0010585400 -0.0118407900 -0.0025100200 -0.2662259700 -0.2662259700 0.0768093800	961 1.9437527500 0.8313043600 -0.8365989200 -2.3126785600 -2.3126785600 -1.8844865100	0.0000000000 0.000000000 0.000000000 -0.8041740000 0.8041740000 0.000000000

HF+HCO	E = -214.1273	977	
С	-0.0025580098	0.0000000000	0.0140681992
0	0.1219238751	0.0000000000	1.1099683223
Н	-0.1308327208	0.0000000000	-1.1303756439
F	-0.0536820083	0.0000000000	-2.6221831488
Н	-0.6931900424	0.0000000000	-3.3041734339
HF+HOC	E = -214.0917	791	
F	1.6996367067	0.1443539641	0.000000000
Н	0.6066700438	0.0117149434	0.000000000
С	-1.8018790406	0.0043091366	0.000000000
0	-0.6617943413	-0.0311890454	0.000000000
Н	2.2312641214	-0.6425369888	0.000000000
C ₂ H ₂ +HCO	E = -191.00411	.73	
0	0.000000000	0.0000000000	2.3590460700
С	0.000000000	0.0000000000	1.2444060700
Н	0.000000000	0.0000000000	-0.6142419300
С	-0.000000000	-0.6050090000	-1.8358099300
С	0.000000000	0.6050090000	-1.8358099300
Н	0.000000000	1.6784520000	-1.8474219300
Н	0.0000000000	-1.6784520000	-1.8474219300
SO ₂ +HCO	E = -662.3779	061	
Н	-0.8820010220	0.4007781519	0.000000000
С	-2.3551063004	-0.2604923360	0.000000000
0	-3.3789863610	-0.6951370061	0.000000000
0	0.0381513015	0.9615931113	0.000000000
0	1.5181420520	-1.0279289334	0.000000000
S	1.4355280800	0.3899908924	0.000000000

Optimized geometry at B3LYP/6-311g(3df,3pd) level (Cartesian coordinates, A) and total energy (a.u.) for the (CHB₁₁F₁₁)-HCO⁺ complex. CHB11F11+HCO E = -1525.4422023

CHB11F11+HCO	E = -1525.442	2023	
В	-0.0001712309	-0.0013674010	0.0039823555
В	0.0021690122	-0.0021263760	2.9008807604
В	1.6951324703	-0.0020973114	2.3796604345
В	0.4914841355	0.9681909574	1.4762649348
В	1.6932835653	-0.0205132047	0.5862041852
В	-0.8137961220	-1.5444646458	0.5573807948
В	0.4006891757	-2.4938918349	1.4684052411
В	-0.7823539204	-1.5123276764	2.3485965472
В	0.8938378599	-1.5155815717	2.8746013917
В	-1.0614992814	0.0181412090	1.4582594235
В	0.8986681019	-1.5501425582	0.0268150866
С	1.8170456170	-1.4898198177	1.4927348219
Н	2.7786929060	-1.9852136577	1.4813458854
F	2.7488555666	0.4454486772	3.0873888100

F	2.7680934323	0.4347897327	-0.0774438507
F	1.2177945009	-2.1284658121	4.0903289948
F	0.5263654305	-3.8328296934	1.5228122178
F	1.4028098329	-2.1933718949	-1.0385688189
F	-0.4080725523	0.4406665510	4.1610381505
F	-1.7037298222	-2.0534648666	3.2489283494
F	-1.7985618813	-2.1309647874	-0.1556592746
F	-0.3521018128	0.6033563405	-1.1496935117
F	0.5125428747	2.3178961230	1.4712997587
F	-2.2659867928	0.6327660241	1.4885714967
Н	-0.0895616988	-1.7782940978	4.9899041219
С	-1.0693617164	-1.4198916004	5.4016770098
0	-1.9840910143	-1.1530903030	5.9714967466