Supplementary information

UV-vis-NIR spectrophotometry:

Figure ESI 1: UV-vis-NIR spectrum of Am(III) solution ($C_{Am(III)} = 1.6 \cdot 10^{-3}M$) in 1M perchloric medium (sample 1-1).

wave length (nm)

Figure ESI 2: UV-vis-NIR spectrum of Pu(III) solution ($C_{Pu(III)} = 1.57 \cdot 10^{-2}$ M) in 1M perchloric medium (sample 2).

wave length (nm)

Figure ESI 3: UV-vis-NIR spectrum of U(VI) solution ($C_{U(IV)} = 2.835 \cdot 10^{-2}$ M) in 1M perchloric medium (sample 3).

wave length (nm) Figure ESI 4 : UV-vis-NIR spectrum of Cm(III) solution ($C_{Cm(III)} = 1.64 \cdot 10^{-4}$ M) in 1M perchloric medium (sample 5).

Figure ESI 5: UV-vis-NIR spectrum of Nd(III) solution ($C_{Nd(III)} = 6.27 \cdot 10^{-2}$ M) in 1M perchloric medium (sample 6-9).

Temperature variation of magnetic susceptibility:

Figure ESI 6: Molar magnetic susceptibility variation vs. 1/T for HClO₄ solution.

Figure ESI 7: Molar magnetic susceptibility variation vs. 1/T for sample 5 before $(\chi_{Cm(III)})$ and after $(\chi_{Cm(III), \text{ corr.}})$ correction of the α emission effect in 1M perchloric medium.

Computation results:

Table ESI 1: Energy (cm⁻¹) of the free ion levels of Pu³⁺ calculated with GRASP, SO-CASSCF and SO-CASPT2. 21 sextets, 188 quartets and 143 doublets are considered in the SO step for SO-CASSCF and SO-CASPT2.

J	GRASP	SO-CASSCF	SO-CASPT2
5/2	0	0	0
7/2	2737	3130	3464
9/2	5513	6271	6809
3/2	8044	8418	7179
1/2	8071	8586	7474
11/2	8167	9086	9632
5/2	8432	8758	7368

Table ESI 2: Curie constants C (10⁻⁸ m³.K.mol⁻¹) and temperature-independent susceptibilities χ_{TI} (10⁻⁸m³.mol⁻¹) from SO-CASPT2 calculations for Pu³⁺. LS space: states included in the SO calculation; J space: states included in the calculation of χ .

LS space	J space	ΔE	С	χ_{TI}
6H	5/2		111	0.00
۶H	5/2;7/2	1762	106	0.55
⁶ H;⁴G	5/2		141	0.00
6H;₄C	5/2;7/2	2676	141	0.33

Table ESI 3: Energy gaps ΔE_{I} in cm⁻¹, magnetic moments M_{I}^{u} in μ_{B} , Boltzmann weights P_{I} , truncated magnetization $M_{u}^{0 \to k}$ in μ_{B} and magnetic susceptibility χ_{M} in m³.mol⁻¹ for [Pu(H₂O)₉]³⁺ in a magnetic field of 9.4 Tesla and at T=298 K. Diagonalization of Hamiltonian of Eq. (1) is performed with 6 electronic states.

-	ΔE_{I}	M^u_I	P _I	$M^{0 \to k}_{\ u}$	χм
Direction z	0	0.346	1.00	0.346	
	3	-0.333	0.98	0.009	0.64.10-8
	138	0.435	0.51	0.096	
	142	-0.436	0.50	0.007	0.51.10-8
	230	0.449	0.33	0.051	
	233	-0.461	0.32	0.005	0.40·10 ⁻⁸
Direction x	0	0.275	1.00	0.275	
	2.3	-0.250	0.99	0.014	1.06.10-8
	139	0.095	0.51	0.030	
	140	-0.093	0.51	0.009	0.20.10-8
	230	0.130	0.33	0.021	
	232	-0.157	0.33	0.007	0.52·10 ⁻⁸
Direction y	0	0.288	1.00	0.288	
	2.4	-0.271	0.99	0.010	0.76.10-8
	139	0.257	0.51	0.061	
	141	-0.260	0.51	0.006	0.50.10-8
	229	0.528	0.33	0.058	
	233	-0.543	0.32	0.005	0.40·10 ⁻⁸

Table ESI 4: Curie constants C (10⁻⁸ m³.K.mol⁻¹), temperature-independent susceptibilities χ_{TI} (10⁻⁸m³.mol⁻¹) and susceptibility at 298 K from SO-CASPT2 calculations and experiment for [Pu(H₂O)_n]³⁺ complexes. d_{Pu-OH_2} is the Pu-O distance (Å).

	d_{Pu-OH_2}	С	χ_{TI}	χ(298)
[Pu(H ₂ O) ₉] ³⁺	2.49	111.6	0.37	0.74
[Pu(H ₂ O) ₉] ³⁺	2.39	99.9	0.39	0.77
[Pu(H ₂ O) ₉] ³⁺	2.59	124.8	0.36	0.78
[Pu(H ₂ O) ₈] ³⁺	2.39	79.5	0.44	0.70
[Pu(H ₂ O) ₁₀] ³⁺	2.39	104.4	0.39	0.75
Exp.		231.9	-0.01	0.77
Exp. corrected		175.9	-0.13	0.46

Table ESI 5: Energy (cm⁻¹) of the free ion levels of Am³⁺ calculated with GRASP, SO-CASSCF and SO-CASPT2. 7 septets, 119 quintets and 91 triplets are considered in the SO step for SO-CASSCF and SO-CASPT2.

J	GRASP	SO-CASSCF	SO-CASPT2
0	0	0	0
1	1883	2011	2569
2	4098	4643	5775
3	6282	7060	8436
4	8339	9212	10601
5	10214	11171	12454
6	11792	12592	13530
0	14118	16213	15235

Table ESI 6: Temperature-independent susceptibilities χ_{TI} (10⁻⁸m³. mol⁻¹) from SO-CASPT2 calculations for Am³⁺. LS space: states included in the SO calculation; J space: states included in the calculation of χ .

LS space	J space	ΔE	χ_{TI}
$^{7}\mathrm{F}$	0;1	473	4.80
⁷ F; ⁵ D	0;1	1402	1.58
⁷ F; ⁵ D; ³ P	0;1	2630	0.70

	ΔE_{I}	M_{I}^{u}	P _I	$M^{0 \rightarrow k}_{\ u}$	Ҳм
Direction z	0	0.01192	1.00	0.01192	0.890.10-8
	2309	-0.0071	0.00002	0.01192	
	2313	0.15792	0.00002	0.01192	
	2430	-0.16274	0.00001	0.01192	0.890·10 ⁻⁸
Direction x	0	0.01188	1.00	0.01188	0.887.10-8
	2308	0.15422	0.00002	0.01188	
	2313	-0.00886	0.00002	0.01188	
	2430	-0.15724	0.00001	0.01188	0.887·10 ⁻⁸
Direction y	0	0.01076	1.00	0.01076	0.803 · 10-8
	2304	1.42244	0.00002	0.01079	
	2318	-1.42242	0.00001	0.01077	
	2430	-0.01076	0.00001	0.01077	0.804·10 ⁻⁸

Table ESI 7: Energy gaps ΔE_1 in cm⁻¹, magnetic moments M_I^u in μ_B , Boltzmann weights P_I , truncated magnetization $M_u^{0 \to k}$ in μ_B and magnetic susceptibility χ_M in m³.mol⁻¹ for $[Am(H_2O)_9]^{3+}$ in a magnetic field of 9.4 Tesla and at T=298 K. Diagonalization of Hamiltonian of Eq. (1) is performed with 4 electronic states.

Table ESI 8 : Energy (cm⁻¹) of the free ion levels of Cm³⁺ calculated with GRASP, SO-CASSCF and SO-CASPT2. 1 octuplet, 48 sextets and 76 quartets are considered in the SO step for SO-CASSCF and SO-CASPT2.

J	GRASP	SO-CASSCF	SO-CASPT2
5/2	0	0	0
7/2	25028	28011	23546
5/2	27459	28818	23896
7/2	28810	31302	28331
3/2	29348	32367	27641
9/2	30412	32568	29623

Table ESI 9: Energy gaps ΔE_1 in cm⁻¹, magnetic moments M_I^u in μ_B , Boltzmann weights P_I , truncated magnetization $\frac{M_u^{0\to k}}{u}$ in μ_B and magnetic susceptibility χ_M in m³.mol⁻¹ for Cm³⁺ in a magnetic field of 9.4 Tesla and at T=298 K. Diagonalization of Hamiltonian of Eq. (1) is performed with 8 electronic states.

	ΔE_{I}	M^u_I	P _I	$M^{0 \rightarrow k}_{\ u}$	Ҳм
Directions x, y, z	0	6.17	1.00	6.17	4.604.10-6
	7	2.61	0.97	4.42	3.298.10-6
	10	4.07	0.95	4.31	3.216.10-6
	18	0.48	0.92	3.39	2.530.10-6
	36	-0.52	0.84	2.69	2.007.10-6
	42	2.29	0.81	1.95	1.455.10-6
	55	4.49	0.77	1.16	8.657.10-7
	66	6.03	0.73	0.41	3.060 ·10 ⁻⁷

		8		1() 1	
_	ΔE_{I}	M_{I}^{u}	P _I	$M^{0 \to k}_{\ u}$	χм
Direction z	0	6.69	1.00	6.69	4.992·10 ⁻⁶
	26	4.37	0.88	5.60	4.179·10 ⁻⁶
	34	1.61	0.85	4.37	3.261.10-6
	42	1.13	0.82	3.62	2.701.10-6
	45	35	0.80	2.89	2.157.10-6
	60	-5.96	0.75	1.59	1.187.10-6
	65	-3.32	0.73	0.97	7.239.10-7
	75	-4.17	0.69	0.43	3.209 ·10 ⁻⁷
Direction x	0	6.27	1.00	6.27	4.679.10-6
	6	3.30	0.97	4.80	3.582.10-6
	13	2.44	0.94	4.04	3.015.10-6
	19	1.10	0.91	3.34	$2.492 \cdot 10^{-6}$
	35	0.35	0.84	2.80	2.090.10-6
	43	-2.91	0.81	1.95	1.455.10-6
	55	-4.67	0.77	1.16	8.657.10-7
	67	-5.89	0.72	0.41	3.060·10 ⁻⁷
Direction y	0	5.71	1.00	6.71	5.007.10-6
	5	4.13	0.97	4.93	3.679.10-6
	12	2.39	0.94	4.11	3.067.10-6
	23	0.99	0.89	3.37	$2.515 \cdot 10^{-6}$
	36	-0.06	0.84	2.75	$2.052 \cdot 10^{-6}$
	53	-2.39	0.82	1.98	1.478.10-6
	68	-4.79	0.77	1.14	8.507.10-7
	66	-5.98	0.71	0.41	3.060 ·10 ⁻⁷
	¹ T				
ě.					
ty (10-	0.9 -				— XAm(III), calc.
ti e i i i i i i i i i i i i i i i i i i	0.8				XPu(III), calc.
nscep	0.7				Am(III), corr.
metic	0.6				
r mag	0.5				◆ XPu(III), corr.
Mola	0.4				
	0.3			2 0.0025 0.003 0	0035 0.004
	U	0.0005 0.001	0.0015 0.00	2 0.0025 0.005 0	

Table ESI 10 : Energy gaps ΔE_1 in cm⁻¹, magnetic moments M_I^u in μ_B , Boltzmann weights P_I , truncated magnetization $M_u^{0 \to k}$ in μ_B and magnetic susceptibility χ_M in m³.mol⁻¹ for $[Cm(H_2O)_9]^{3+}$ in a magnetic field of 9.4 Tesla and at T=298 K. Diagonalization of Hamiltonian of Eq. (1) is performed with 8 electronic states.

1/T (K-1)

Figure ESI 8 : Experimental molar magnetic susceptibility variation vs. 1/T for sample 1-1 and 2 after correction of their α and β - radioactivity in 1M perchloric medium ($\chi_{Am(III), corr.}$ and $\chi_{Pu(III), corr.}$) and calculated for $[Am(H_2O)_9]^{3+}$ and $[Pu(H_2O)_9]^{3+}$ ($\chi_{Am(III), calc.}$ and $\chi_{Pu(III), calc.}$).