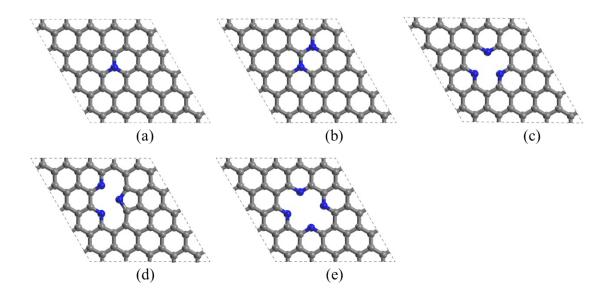
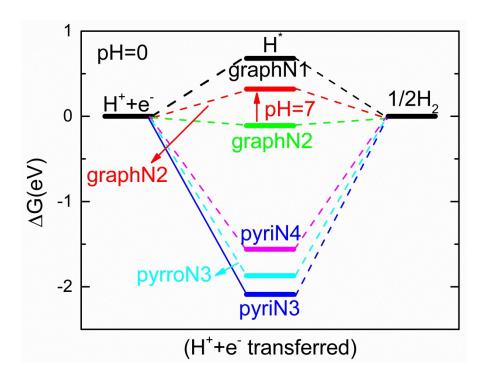
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information


Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study

Yuejie Liu,‡ Jingxiang Zhao†,* Qinghai Cai†,‡


[†] College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China

[‡] Modern Lab Center, Harbin Normal University, Harbin 150025, China

^{*} To whom correspondence should be addressed. Email: xjz_hmily@163.com (JX)

Figure S1. The optimized structures of different N-doped graphenes: (a) graphN1, (b) graphN2, (c) pyriN3, (d) pyrroN3, and (e) pyriN4. The gray and blue balls represent the C and N atoms, respectively.

Figure S2. Free energy diagram of HER on various N-doped graphenes.

Table S1. The N content, shortest C-N bond length $(d_{C-N}, \text{ Å})$ and formation energies $(E_f, \text{ eV})$ of different N-doped graphenes.

	graphN1	graphN2	pyriN3	pyrroN3	pyriN4
N, wt %	2.33	4.64	7.07	7.07	9.59
$d_{ ext{C-N}}$	1.408	1.398	1.338	1.323	1.330
$E_{ m f}$	0.83	2.05	3.30	5.71	3.67