Supporting information for "Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method"

Meiyuan Guo, Lasse Kragh Sørensen, Mickaël G. Delcey, Rahul V. Pinjari, and Marcus Lundberg

Additional figures and tables

List of Tables

1	Geometries used in the K pre-edge simulations.	3					
2	Oscillator strengths for selected X-ray absorption resonance from different						
	contributions: electric-dipole-electric-dipole $(f^{\mu}\mu)$, electric-quadrupole-electric-quadrupole						
(f^{QQ}) , magnetic-dipole-magnetic-dipole (f^{mm}) , electric-dipole-electric-octupole $(f^{\mu O})$,							
	electric-dipole-magnetic-quadrupole $(f^{\mu M})$. Threshold for printing these contributions is						
	10^{-12}	3					
3	Parameters (in eV) for the semi-empirical CTM simulations. All parameters are taken						
	from earlier fits to the L-edge XAS spectra, Ref.[34,35].	3					
4	Intensities, average scaling factors and energy shifts(eV)	4					
5	Selected metal-ligand covalencies (in % metal content) from RAS (ground and excited						
	states), CTM and DFT calculations. For the T_d symmetric complexes the amount of $4p$						
	character is shown in parenthesis	4					

List of Figures

Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the $RAS(11,0,2:0,10,1)$ calculation of $[FeCl_6]^{3-}$ with 30 final states.	4
Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the $RAS(12,0,2:0,10,1)$ calculation of $[FeCl_6]^{4-}$ with 20 final states.	5
Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the RAS(13,0,2:0,11,1) calculation of $[FeCl_4]^{1-}$ with 30 final states.	5
Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the RAS(14,0,2:0,11,1) calculation of $[FeCl_4]^{2-}$ with 30 final states.	5
Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the RAS(12,0,2:0,10,1) calculation of $[Fe(CN)_6]^{4-}$ with 20 final states.	6
Selected active orbitals in the ground state (top line) and excited state (bottom line) for	
the $RAS(11,0,2:0,10,1)$ calculation of $[Fe(CN)_6]^{3-}$ with 80 final states.	6
	Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(11,0,2:0,10,1) calculation of $[FeCl_6]^{3^-}$ with 30 final states

7	K pre-edge XAS spectra of $[\text{FeCl}_6]^{3-}(\text{left})$ and $[\text{FeCl}_6]^{4-}(\text{right})$ with different number of excited states in each of the four final-state irreducible representation $(a_{1g}, b_{1g}, b_{2g}, \text{ and})$
8	b_{3g})
	excited states in each of the four final-state irreducible representation $(a, b_1, b_2, and b_3)$. Quadrupole (solid line) and dipole (dash line) contributions are calculated separately 7
9	K pre-edge XAS spectra of $[Fe(CN)_6]^{4-}(left)$ and $[Fe(CN)_6]^{3-}(right)$ with different number of excited states in each of the four final-state irreducible representation $(a_{1g}, b_{1g}, b_{2g}, and$
	b_{3g}).
10	Experimental iron K pre-edge spectra for the six iron complexes in the present study 7
11	Peak fitting of the K-edge XAS spectra (black) of $[\text{FeCl}_6]^{3-}$ (left) and $[\text{FeCl}_6]^{4-}$ (right).
	The smoothed second derivative of the K-edge XAS is shown in blue and fitted peaks
	with dashed green lines. Fitting of K pre-edge features was performed using the EDG-FIT
	module of the EXAFSPAK suite using pseudo-Voigt line shapes with a fixed 50:50 ratio
	of Lorentzian to Gaussian functions where the peak positions, width and intensities were
	varied. Two functions are used to model the the rising edge
12	Peak fitting of the K-edge XAS spectra (black) of $[FeCl_4]^{1-}$ (left) and $[FeCl_4]^{2-}$ (right). For
	a detailed description of the fitting procedure see the caption of Figure 11
13	Peak fitting of the K-edge XAS spectra (black) of $[Fe(CN)_6]^{4-}$ (left) and $[Fe(CN)_6]^{3-}$ (right).
	For a detailed description of the fitting procedure see the caption of Figure 11 8
14	The wavefunctions of T_{1g} and T_{2g} states for high-spin d^6 system and low-spin d^5 system. 9
15	RAS simulations of the K pre-edge of $[Fe(CN)_6]^{4-}$ (left) and $[Fe(CN)_6]^{3-}$ (right) with the
	π^* orbitals in the active space (black) and without (red). For $[\text{Fe}(\text{CN})_6]^{4-}$ spectra are
	calculated with 20 states per irreducible representation and for $[Fe(CN)_6]^{3-}$ with 60 states
	per irreducible representation
16	RAS simulations of the K pre-edge of $[Fe(CN)_6]^{3-}$ with 80 states in each of the four final
	state (black) and only single excitations allowing into e_g and π^* orbitals (red). The orbital
	analysis is performed on the calculation with single excitations
17	Correlation between the experimental integrated pre-edge area and RAS intensities (left),
	and between the two different ways to estimate the experimental pre-edge areas, for details
	see the Computational details

Table 1: Geometries used in the K pre-edge simulations.

Bond ^a	$[\text{FeCl}_6]^{3-}$	$[\text{FeCl}_6]^{4-}$	$[\text{FeCl}_4]^{1-}$	$[\text{FeCl}_4]^{2-}$	$[\text{Fe(CN)}_6]^{4-}$	$[\mathrm{Fe(CN)}_6]^{3-}$
Fe-Cl	2.400	2.510	2.186	2.292	-	-
Fe-C	-	-	-	-	1.913	1.936/1.916
C-N	-	-	-	-	1.161	1.178/1.180

^a Bond distances are taken from crystal structures (Ref.[43-47]) for all complexes except $[Fe(CN)_6]^{3^-}$, where the geometry is from a CASPT2/ANO-RCC-VTZP(9,0,0;0,10,0) optimization. Jahn-Teller distortions due to uneven occupation of near-degenerate 3*d* orbitals are expected for $[FeCl_6]^{4^-}$, $[FeCl_4]^{2^-}$, and $[Fe(CN)_6]^{3^-}$. In $[Fe(CN)_6]^{3^-}$, where calculations are performed on the distorted geometry, the effects on the final X-ray spectrum of the Jahn-Teller distortion is small. For $[FeCl_4]^{2^-}$ geometry optimization using CASPT2/ANO-RCC-VTZP(12,0,0;0,11,0) did not give any significant distortion, and the experimental (non-distorted) geometries are used for both $[FeCl_4]^{2^-}$ and $[FeCl_6]^{4^-}$. The O_h and D_{4h} systems are calculated in D_{2h} symmetry and the T_d systems in D_2 symmetry. In both these point groups the final states can belong to four different irreducible representations.

Table 2: Oscillator selected X-ray absorption resonance different strengths for from $(f^{\mu}\mu),$ contributions:electric-dipole-electric-dipole electric-quadrupole-electric-quadrupole $(f^{mm}),$ $(f^{\mu O}).$ $(f^{QQ}),$ magnetic-dipole-magnetic-dipole electric-dipole-electric-octupole electric-dipole-magnetic-quadrupole ($f^{\mu M}$). Threshold for printing these contributions is 10^{-12}

	Excitation states	$f^{\mu\mu}$	f^{QQ}	$^{\mathrm{a}}f^{mm}$	$f^{\mu O}$	$f^{\mu M}$
$[\text{FeCl}_6]^{3-}$	${}^{5}T_{2g}(7112.8 \text{ eV})$	0.00	3.94E-06	0.00	0.00	0.00
	${}^{5}E_{g}(7114.2 \text{ eV})$	0.00	3.39E-06	0.00	0.00	0.00
$[\text{FeCl}_6]^{4-}$	${}^{4}T_{1g}(7111.3 \text{ eV})$	0.00	4.20E-06	0.00	0.00	0.00
-	${}^{4}T_{2g}(7112.0 \text{ eV})$	0.00	3.39E-06	0.00	0.00	0.00
	${}^{4}T_{1g}(7113.5 \text{ eV})$	0.00	3.59E-06	0.00	0.00	0.00
$\left[\mathrm{FeCl}_4\right]^{1-}$	${}^{5}E(7112.5 \text{ eV})$	0.00	3.97E-06	0.00	0.00	0.00
	${}^{5}T_{2}(7113.2 \text{ eV})$	2.27E-05	3.27E-06	0.00	2.73E-07	$9.37 \text{E}{-}08$
$[\text{FeCl}_4]^{2-}$	${}^{4}A_{2} (7110.8 \text{ eV})$	0.00	3.65E-06	0.00	0.00	0.00
-	${}^{4}T_{2}(7111.6 \text{ eV})$	1.06E-05	3.00E-06	0.00	1.16E-08	4.40E-08
	${}^{4}T_{1}(7112.0 \text{ eV})$	1.05E-05	2.99E-06	0.00	1.09E-08	4.91E-08
$[\text{Fe(CN)}_6]^{4-}$	$^{2}E_{g}(7112.9 \text{ eV})$	0.00	6.51E-06	0.00	0.00	0.00
$[{\rm Fe(CN)}_{6}]^{3-}$	$^{1}A_{1g}(7110.1 \text{ eV})$	0.00	3.43E-06	0.00	0.00	0.00
	$^{3}T_{1g}(7112.9 \text{ eV})$	0.00	3.75E-06	0.00	0.00	0.00

^a The selection rules for allowed magnetic-dipole-magnetic-dipole transitions are $\triangle J=0,\pm 1$ and no parity change. For $1s \rightarrow 3d$ transition, $\triangle J=2$, and for $1s \rightarrow 4p$, then parity is changed.

Table 3: Parameters (in eV) for the semi-empirical CTM simulations. All parameters are taken from earlier fits to the L-edge XAS spectra, Ref. [34,35].

		Configuration separations				LM	CT	MLCT	
	10Dq	EG2	$\mathrm{EF2}$	EG3	EF3	$T(t_{2g})$	$T(e_g)$	$T(t_{2g})$	$T(e_g)$
$[\text{FeCl}_6]^{3-}$	1.20	0.10	-2.20	-	-	0.90	1.75	-	-
$[\text{FeCl}_6]^{4-}$	0.60	2.25	1.75	-	-	0.45	0.9	-	-
$[\text{Fe(CN)}_6]^{4-}$	3.90	2.06	1.56	-2.00	-0.00	0.00	1.90	1.60	$0.00/1.00^{\rm a}$
$[\text{Fe(CN)}_6]^{3-}$	4.00	1.00	0.50	-1.00	-1.50	0.60	2.10	2.00	$0.00/0.90^{\rm a}$

^a Different parameters in initial and final states.

Table 4: Intensities, average scaling factors and energy shifts(eV).

	Intensity		Average scalin	g factor	Energy	shift
	RAS^{a}	Experiment ^b	RAS	CTM	RAS	DFT
$[\text{FeCl}_6]^{3-}$	1.57×10^{-5}	6.06×10^{-2}	2.57×10^{-4}	11.0	-18.71	171.6
$[\text{FeCl}_6]^{4-}$	1.28×10^{-5}	4.97×10^{-2}	2.57×10^{-4}	11.0	-18.30	172.0
$[\text{FeCl}_4]^{1-}$	$7.26 \times 10^{-5} (1.62 \times 10^{-5})^{c}$	2.81×10^{-1}	$2.57{ imes}10^{-4}$	11.0	-20.01	171.3
$[\text{FeCl}_4]^{2-}$	$4.63 \times 10^{-5} (1.36 \times 10^{-5})^{c}$	1.65×10^{-1}	$2.57{ imes}10^{-4}$	11.0	-20.13	171.5
$[\text{Fe}(\text{CN})_6]^{4-}$	1.03×10^{-5}	6.21×10^{-2}	2.57×10^{-4}	11.0	-18.35	172.4
$[{\rm Fe}({\rm CN})_{6}]^{3-}$	1.43×10^{-5}	7.55×10^{-2}	2.57×10^{-4}	11.0	-18.38	171.9

^a Sum of oscillator strengths, not including LMCT or MLCT contributions. The intensity is integrated over the energy range from 7109 to 7116 for [FeCl₆]³⁻ and [FeCl₆]⁴⁻, from 7109 to 7115.5 for [FeCl₄]¹⁻ and [FeCl₄]²⁻, from 7110 to 7114.8 for [Fe(CN)₆]⁴⁻, from 7108.5 to 7115.8 for [Fe(CN)₆]³⁻.
^b Integrated pre-edge area from the edge subtracted spectra.

^c The sum of oscillator strength for quadrupole contributions.

Table 5: Selected metal-ligand covalencies (in % metal content) from RAS (ground and excited states), CTM and DFT calculations. For the T_d symmetric complexes the amount of 4p character is shown in parenthesis.

	RAS ground		RAS excited		CTM ground ^a		B3LYP ground		BP86 ground ^a	
	t_{2g}	e_g	t_{2g}	e_g	t_{2g}	e_g	t_{2g}	e_g	t_{2g}	e_g
$[\text{FeCl}_6]^{3-}$	97.9	82.7	95.5	61.1	95	70	94	72	85	64
$[\text{FeCl}_6]^{4-}$	97.5	91.6	96.9	61.4	96	88	98	91	94	83
$[\text{Fe}(\text{CN})_6]^{4-}$	92.5	64.8	90.4	69.8	-	45	69	59	77	57
$\left[\mathrm{Fe(CN)}_6\right]^{3-}$	95.5	61.3	93.0	67.8	60	47	77	72	75	54
	$t_2(4p)$	e	$t_2(4p)$	e	$t_2(4p)$	e	$t_2(4p)$	e	t_2	e
$\left[\mathrm{FeCl}_4\right]^{1-}$	81.1(1.1)	95.9	70.8(1.3)	94.5	76	89	76(2.6)	89	68	77
$[\text{FeCl}_4]^{2-}$	91.4(0.7)	97.4	67.6(0.8)	96.3	87	93	80(1.5)	91	84	89

^a Ref.[34,35]

Figure 1: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(11,0,2:0,10,1) calculation of $[FeCl_6]^{3-}$ with 30 final states.

Figure 2: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(12,0,2:0,10,1) calculation of $[FeCl_6]^{4-}$ with 20 final states.

Figure 3: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(13,0,2:0,11,1) calculation of $[\text{FeCl}_4]^{1-}$ with 30 final states.

Figure 4: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(14,0,2:0,11,1) calculation of $[FeCl_4]^{2-}$ with 30 final states.

Figure 5: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(12,0,2:0,10,1) calculation of $[Fe(CN)_6]^{4-}$ with 20 final states.

Figure 6: Selected active orbitals in the ground state (top line) and excited state (bottom line) for the RAS(11,0,2:0,10,1) calculation of $[Fe(CN)_6]^{3-}$ with 80 final states.

Figure 7: K pre-edge XAS spectra of $[\text{FeCl}_6]^{3-}(\text{left})$ and $[\text{FeCl}_6]^{4-}(\text{right})$ with different number of excited states in each of the four final-state irreducible representation $(a_{1g}, b_{1g}, b_{2g}, \text{ and } b_{3g})$.

Figure 8: K pre-edge XAS spectra of $[\text{FeCl}_4]^{1-}(\text{left})$ and $[\text{FeCl}_4]^{2-}(\text{right})$ with different number of excited states in each of the four final-state irreducible representation $(a, b_1, b_2, \text{ and } b_3)$. Quadrupole (solid line) and dipole (dash line) contributions are calculated separately.

Figure 9: K pre-edge XAS spectra of $[Fe(CN)_6]^{4-}(left)$ and $[Fe(CN)_6]^{3-}(right)$ with different number of excited states in each of the four final-state irreducible representation $(a_{1g}, b_{1g}, b_{2g}, and b_{3g})$.

Figure 10: Experimental iron K pre-edge spectra for the six iron complexes in the present study.

Figure 11: Peak fitting of the K-edge XAS spectra (black) of $[\text{FeCl}_6]^{3-}$ (left) and $[\text{FeCl}_6]^{4-}$ (right). The smoothed second derivative of the K-edge XAS is shown in blue and fitted peaks with dashed green lines. Fitting of K pre-edge features was performed using the EDG-FIT module of the EXAFSPAK suite using pseudo-Voigt line shapes with a fixed 50:50 ratio of Lorentzian to Gaussian functions where the peak positions, width and intensities were varied. Two functions are used to model the the rising edge.

Figure 12: Peak fitting of the K-edge XAS spectra (black) of $[\text{FeCl}_4]^{1-}$ (left) and $[\text{FeCl}_4]^{2-}$ (right). For a detailed description of the fitting procedure see the caption of Figure 11.

Figure 13: Peak fitting of the K-edge XAS spectra (black) of $[Fe(CN)_6]^{4-}(left)$ and $[Fe(CN)_6]^{3-}(right)$. For a detailed description of the fitting procedure see the caption of Figure 11.

High-spin d⁶ systems $(1s \rightarrow 3d(e_g) \text{ excitations})$

Low-spin d⁵ systems (1s \rightarrow 3d(e_g) excitations)

$$\begin{split} {}^{3}T_{1}(\gamma,M_{s}=1) &= \left| \xi \eta \overline{\eta} \xi \overline{\xi} v \right| \\ {}^{3}T_{2}(\zeta,M_{s}=1) &= \left| \xi \eta \overline{\eta} \xi \overline{\xi} u \right| \\ {}^{3}T_{1}(\beta,M_{s}=1) &= \frac{1}{2} \left(- \left| \xi \overline{\zeta} \eta \xi \overline{\xi} u \right| - \sqrt{3} \left| \xi \overline{\zeta} \eta \xi \overline{\xi} v \right| \right) \\ {}^{3}T_{1}(\alpha,M_{s}=1) &= \frac{1}{2} \left(- \left| \xi \overline{\zeta} \eta \overline{\eta} \xi u \right| + \sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{1}(\alpha,M_{s}=1) &= \frac{1}{2} \left(- \left| \xi \overline{\zeta} \eta \overline{\eta} \xi u \right| + \sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| - \left| \xi \overline{\zeta} \eta \overline{\eta} \xi v \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) &= \frac{1}{2} \left(-\sqrt{3} \left| \xi \overline{\zeta} \eta \overline{\eta} \xi \xi u \right| \right) \\ {}^{3}T_{2}(\xi,M_{s}=1) \\ {}^{3}T_{2}(\xi,M_{$$

Figure 14: The wavefunctions of T_{1g} and T_{2g} states for high-spin d^6 system and low-spin d^5 system.

Figure 15: RAS simulations of the K pre-edge of $[Fe(CN)_6]^{4-}$ (left) and $[Fe(CN)_6]^{3-}$ (right) with the π^* orbitals in the active space (black) and without (red). For $[Fe(CN)_6]^{4-}$ spectra are calculated with 20 states per irreducible representation and for $[Fe(CN)_6]^{3-}$ with 60 states per irreducible representation.

Figure 16: RAS simulations of the K pre-edge of $[Fe(CN)_6]^{3-}$ with 80 states in each of the four final state (black) and only single excitations allowing into e_g and π^* orbitals (red). The orbital analysis is performed on the calculation with single excitations.

Figure 17: Correlation between the experimental integrated pre-edge area and RAS intensities (left), and between the two different ways to estimate the experimental pre-edge areas, for details see the Computational details.