Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information for

Synthesis of Morphology-Controlled Bismutite for Selective Applications

Thangavel Selvamani,^a Balasubramaniam Gnana Sundara Raj,^a Sambandam Anandan,^{*,a} Jerry J

Wu,^b and Muthupandian Ashokkumar^{*,c}

^aNanomaterials and Solar Energy Conversion Lab, Department of Chemistry,

National Institute of Technology, Tiruchirappalli - 620 015, India

^bDepartment of Environmental Engineering and Science, Feng Chia University, Taichung 407,

Taiwan

^cSchool of Chemistry, University of Melbourne, Vic 3010, Australia

Fig. S1 FT-IR spectrum of Bi₂O₂CO₃ nanoplatelets (i) and nanodiscs (ii)

Fig. S2. Adsorption profile and percentage of adsorption (RR %) for different morphologies of $Bi_2O_2CO_3$ in the presence of AO7 (a and b) and MO (c and d)

Fig. S3 Powder XRD pattern (a) and FESEM images (b) for before and after AO7 adsorption of $Bi_2O_2CO_3$ nanosheets sample. FT-IR spectrums (c) and (d) for before and after AO7 and MO adsorption profiles on $Bi_2O_2CO_3$ nanosheets sample

Fig. S4 Time dependence UV-vis absorption spectrum (a) and Photocatalytic degradation curve for different morphologies of $Bi_2O_2CO_3$ in the presence of MB under illumination

Fig. S5 Powder XRD (a), FESEM images (b) and FT-IR spectrum (c) of $Bi_2O_2CO_3$ nanosheets before and after photocatalysis of Rh B degradation under visible light irradiation

Fig.S6. Photographs of 25 mg nanosheets adsorbed in 100 mL AO 7 dye solution $(1x10^{-4} \text{ mol } \text{L}^{-1})$

Fig. S7. Photographs of 25 mg nanosheets adsorbed in 100 mL MO dye solution (1x10⁻⁴ mol L⁻¹)

Fig. S8. Photographs of 50 mg nanosheets photocatalysis in 100 mL RhB dye solution ($5x10^{-5}$ mol L⁻¹)

Fig. S9. Photographs of 50 mg nanosheets photocatalysis in 100 mL MB dye solution ($5x10^{-5}$ mol L⁻¹)

S.No	Bi ₂ O ₂ CO ₃	Lattice parameters (Å)		Volume (Å ³)	
	Samples	alfa	beta	gamma	
1.	Nanosheets	3.91	-	13.64	209.06
2.	Nanoplatelets	3.89	-	13.63	206.75
3.	Nanodiscs	3.90	-	13.64	208.55

Table ST1. Unit cell parameters of as-synthesized $Bi_2O_2CO_3$ samples

Table ST2. The calculated E_g value and $E_{VB_{\rm i}}$ E_{CB} positions for as-synthesized Bi_2O_2CO_3 samples

S.No	Samples	E _g (eV)	E _{VB} (eV)	E _{CB} (eV)
1.	Nanosheets	3.02	3.553	0.533
2.	Nanodiscs	3.12	3.603	0.483
3.	Nanoplatelets	3.21	3.648	0.438

Table ST3. Removal ratios, adsorption capacities of AO 7 and MO for as- synthesized $\rm Bi_2O_2CO_3$ samples

S.No	Bi ₂ O ₂ CO ₃	AO 7		МО	
	Samples	RR (%)	$Q_m (mg g^{-1})$	RR (%)	$Q_m (mg g^{-1})$
1.	Nanosheets	96.1	139.8	91.9	117.8
2.	Nanodiscs	75.1	105.2	78.0	98.5
3.	Nanoplatelets	21.7	30.4	40.2	51.5

Adsorbent	Maximum Adsorption	Reference
	Capacity (mg. g ⁻¹)	
Bi ₂ O ₂ CO ₃ nanosheets	139.8	This work
CuO nanospheres	121.9	RSC Adv., 2014, 4, 43024
Cu ₂ O microspheres	75.9	
Amorphous TiO ₂ /ZrO ₂	<40-101	J. Mater. Chem A 2015, 3,
matrices		3768.

Table ST4. Comparison of adsorption capacity for acid orange 7 (AO 7) on various adsorbents

Table ST5. Comparision of adsorption capacity for methyl orange (MO) on various adsorbents

Adsorbent	Maximum Adsorption	Reference	
	Capacity (mg. g ⁻¹)		
K-δ- MnO ₂ Nanosheet	145	J. Mater. Chem A 2015,3,5674	
Bi ₂ O ₂ CO ₃ nanosheets	117.8	This work	
$CeO_{2-\delta}$ nanopowder	113	Langmuir 2014, 30, 11582.	
CuO nanospheres	68.9	RSC Adv 2014, 4, 43024	
Cu ₂ O microspheres	14.1		