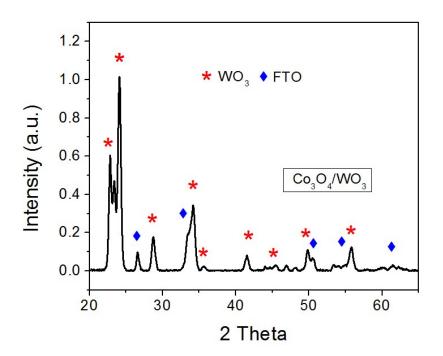
Electronic Supplementary Information

Effect of crystallinity on photocatalytic performance of Co₃O₄

water-splitting cocatalyst

Chin Sheng Chua,^a Davide Ansovini,^{a,b} Coryl Jing Jun Lee,^a Yin Ting Teng,^d Lay Ting Ong,^a

Dongzhi Chi,^a T. S. Andy Hor,^{a,c} Robert Raja,^b and Yee-Fun Lim,^a*


^{*a*} Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore.

^b School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

^{*d*} Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore

Email: <u>limyf@imre.a-star.edu.sg</u>

Figure S1. XRD spectra of 1 layer Co_3O_4 (annealed at 500 °C) on WO₃. Only WO₃ and FTO are detected, as the XRD is not sensitive enough to detect the ultra-thin Co_3O_4 layer.

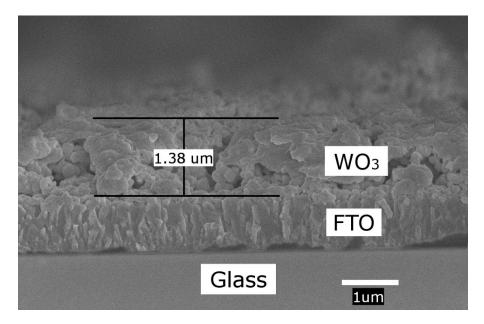


Figure S2. Cross-sectional view of Co₃O₄/WO₃ film

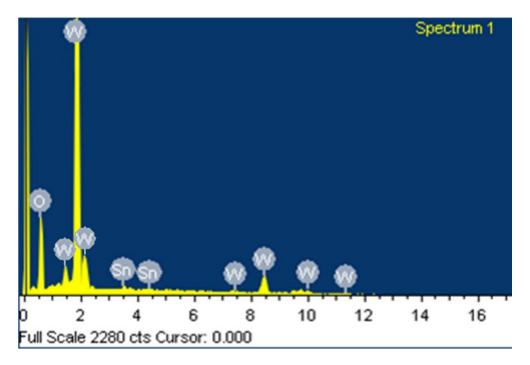


Figure S3. EDX analysis of Co₃O₄/WO₃ film on FTO.

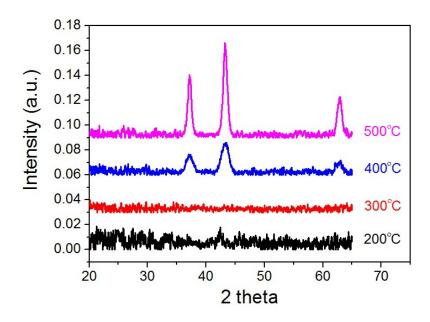


Figure S4. XRD spectra of NiO_x film on silicon at different annealing temperature.

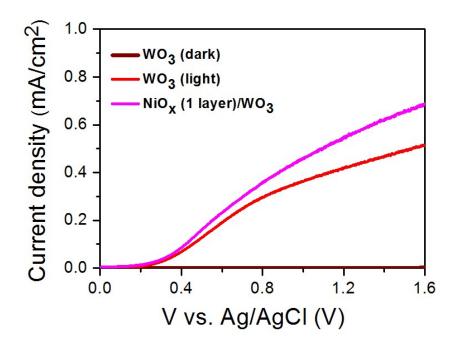


Figure S5.Photocurrent density of bare WO₃, and NiO_x/WO₃ (cocatalyst annealed at 350 °C).

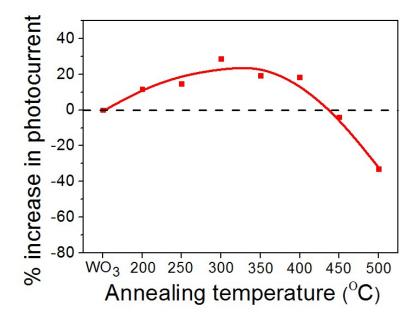


Figure S6. Percentage change in photocurrent (with respect to bare WO₃) with cocatalyst annealing temperature for NiO_x/WO_3 film at 1.2 V vs Ag/AgCl.