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Definition of Formation Energies
We have defined the formation energy of COOH*, Ecoon, as the DFT energy of the
reaction’
COy(g) + * + % Hy(g) = COOH*.
The formation energy of CO*, Eco, is the reaction energy for CO desorption'”
CO(g) +* — CO*.
We define formation energies including adsorbate stabilization due to the solvent as'
Ecoonson) = Ecoorn —0.25 €V and Ecogon) = Eco— 0.1 eV
The formation energy of CHO*, Ecyo, is calculated as the reaction energy of™”
C + H,O(g) + * — CHO* + %2 Hy(g),
where C is carbon in graphene. With the RPBE functional

C+ H0(g) — CO(g) + Ha(g)

has the reaction energy Ecog =1.75 eV,’ which allows calculation of Ecpo without
explicit calculation of graphene. If

CO(g) + * + % Hy(g) — CHO*

has reaction energy AEy, then Ecyo = Eco + AE9. The formation energy of OH*, Eop,
is defined using H,O and H, as reference™

H,0(g) + * — OH* + % Hy(g).

The formation energy of OCHO* is defined using CO, and H; as reference



COy(g) + * + ¥ Hy(g) = OCHO*.

Limiting Potentials
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Figure S1: CO reduction on (111) facets approximated by the limiting potentials for OH
removal and CHO formation. The potential limiting step is indicated in the legend.
Alloys unstable at 0 V vs RHE and pH 7 are shown in gray with smaller symbols.
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Figure S2: CO, reduction on (211) facets approximated by the limiting potentials for OH
and OCHO removal and CHO and COOH formation. The potential limiting step is
indicated. Alloys unstable at 0 V vs RHE and pH 7 are shown in gray with smaller
symbols.
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Figure S3: CO reduction on (211) facets approximated by the limiting potentials for



CHO formation and OH removal. The potential limiting step is indicated. Alloys unstable
at 0 V vs RHE and pH 7 are shown in gray with smaller symbols.
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Figure S4: Free energy diagram for the initial reduction of CO, to CO and CHO* on
AusZn, Zn promoted Au and Au(211) at room temperature. Atomic structures are shown
to the right. The free energy of CO(g) is shown at 1 atmosphere CO partial pressure.
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Figure S5: The limiting potential for CO reduction on (211) and (111) facets versus the
alloy formation energy per formula unit of the L1, alloy.

Segregation

Figure S6: Atomic structures of (211) facets. (a) Stoichiometric A;B(211) with AB
termination. (b) + (c¢) Surfaces with A atoms along the step edge created from the
stoichiometric surface by short-range exchange with atoms at the nearby terrace. (d)
Surface with B atoms along the step edge created by short-range exchange with atoms at
the terrace. (e)+(f) Surfaces with A and B at the step edge created by long range
exchange of step atoms leaving the terrace unchanged. (g)+(f) Surfaces completely
covered by A and B respectively.

The AB terminated A3;B(211) facet contains 4 A atoms and 2 B atoms as shown in Figure
S6(a). Segregation energies are calculated from slab calculations based on the reactions
below.

Swapping B atom at step edge with A atom at nearby terrace

ABeA3nBo = AxeAxnBay

where (e) and (t) subscripts denotes atoms at step and terrace respectively. In the final
state the two possible locations of the swapped B atom are shown in figure S6(b)-(c).

Swapping A atom at the step edge with the B atom at the nearby terrace results in the
final state shown in figure S6(d)

A@BeAsBo = BaeAd
The above processes conserve the stoichiometry of the simulation cell. We also consider

phase separation along the step resulting in separate domains with either A or B atoms
along the step edges as shown in figure S6(e)-(f).



ABeAsnBy = 72 AxeyA2mBaw T V2 Bae)Aag

Finally, we consider complete phase separation on steps and terraces resulting in final
states shown in Figures S6(g)-(h)

AeBeAsnBw = 2/3 Axe)Adm+ 1/3 Bae)Bagy
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Figure S7: Segregation energies on (211) surfaces versus bulk alloy formation energies
per formula unit.

CO reduction to CHO
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Figure S8: Histogram of CO and CHO configurations on (211) steps. “CO br” refers to
CO adsorbed at a step bridge site through the C atom. “CO atop X” refers to CO adsorbed
on an atom of type X at the step. “CHO br XY refers to CHO adsorbed in a bridging
position at the step with the C atom coordinated to an atom of type X and the O atom
coordinated to an atom or type Y. The structures in figure 5(e)-(f) in the main text
correspond to the class “CO atop X, CHO br XY”. Only alloys with Eco < 0.05 eV are
included in this analysis.
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