Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Effect of carbon vacancies on structures, mechanical properties, and chemical bonding of zirconium carbides: A first principles study

Congwei Xie^{a, b, *}, Artem R. Oganov^{c, d, a, e[†]}, Duan Li^{b, a}, Tekalign Terfa Debela^{a, b}, Ning Liu^{b, a}, Dong Dong^{a, b}, Qingfeng Zeng^{b, a}

^aInternational Center for Materials Discovery, School of Materials Science and

Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR

China

^bScience and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

^cSkolkovo Institute of Science and Technology, 5 Nobel street, Skolkovo 143025,

Russia

^dMoscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russia

^eDepartment of Geosciences and Center for Materials by Design, Stony Brook University, Stony Brook, New York 11794, USA

* xiecw1021@mail.nwpu.edu.cn
† artem.oganov@stonybrook.edu

Content

- 1. Dynamical stability of the newly predicted metastable compounds
- 2. The computed elastic constants for all the stable and metastable compounds
- 3. Mathematical analysis about decreasing rate of bulk modulus (*dB/B*) and shear modulus (*dG/G*)

1

1. Dynamical stability of the newly predicted metastable compounds

For a newly predicted structure, we need to verify its dynamical stability. Generally, a structure is dynamically stable when no imaginary phonon frequencies have been found throughout the Brillouin zone. We have computed phonon dispersion curves for the two newly predicted metastable zirconium carbides Zr_5C_4 (*P*-1) and Zr_8C_7 (*P*-1), as shown in Fig. S1 and Fig. S2. We can find that both of them are dynamically stable.

Fig. S1: Phonon dispersion curves computed for the newly predicted Zr₅C₄ (P-1)

Fig. S2: Phonon dispersion curves computed for the newly predicted Zr_8C_7 (P-1)

2. The computed elastic constants for all the stable and metastable compounds

We have computed elastic constants for all the stable and metastable zirconium carbides (as listed in Table SI). For a structure with a given symmetry, its elastic constants matrix *C* can be used to evaluate its mechanical stability. The general stability criterion is: all eigenvalues of matrix C should be larger than zero. In the present prediction, we have discovered two new compounds Zr_5C_4 (*P*-1) and Zr_8C_7 (*P*-1). Both of them are belong to triclinic system. The eigenvalues for the two structures are listed in Table SII. We can find that both of them are mechanically stable.

Compounds	Zr2C	Zr ₂ C ₂	Zr ₄ C ₂	Zr ₅ C ₄	Zr ₄ C ₅	Zr ₇ C ₆	Zr _o C ₇	ZrC
Compoundo	(Fd-3m)	(Fddd)	(C2/c)	(P-1)	(C2/m)	(R-3)	(P-1)	(<i>Fm</i> -3 <i>m</i>)
C_{11}	200	301	345	369	419	385	395	496
C_{12}	105	94	104	92	83	102	110	109
C_{13}		88	89	101	87	106	104	
C_{14}				9		-5	7	
C_{15}			-10	7	3	15	4	
C_{16}				7			17	
C_{22}		299	336	375	386		397	
C_{23}		83	80	105	115		106	
C_{24}				-5			-7	
C_{25}			-1	-9	-1		5	
C_{26}				6			-6	
C_{33}		325	357	353	393	374	406	
C_{34}				1			10	
C_{35}			-8	-5	6		-14	
C_{36}			-	-3	-		-11	
C_{44}	93	110	116	142	162	155	148	151
C_{44} C_{45}	20	110	110	-0.2	102	100	-9	101
C_{45}			-7	-9	-1	-15	9	
C_{40}		100	120	142	131	10	146	
C55		100	120	9	1.5.1		4	
C 56		110	131	135	127		156	

Table SI The calculated independent elastic constants C_{ij} of all the predicted stable and metastable zirconium carbides.

Table SII The eigenvalues for Zr_5C_4 (P-1) and Zr_8C_7 (P-1).

Compounds	<i>E</i> 1	<i>E</i> 2	E3	<i>E</i> 4	<i>E</i> 5	<i>E</i> 6
$Zr_5C_4(P-1)$	134.3682	150.8879	159.0095	288.6970	288.6970	612.7183
$Zr_{8}C_{7}(P-1)$	125.2423	139.7452	150.8066	253.0445	281.4999	563.6535

3. Mathematical analysis about decreasing rate of bulk modulus (dB/B) and shear modulus (dG/G)

We have obtained the relationships between the concentration of carbon vacancies x and bulk modulus B and shear modulus G by fitting the computed bulk and shear moduli for all the stable and metastable zirconium carbides. We have tested different fitting models and evaluated their errors. As listed in the Table SIII, using Linear **model Poly2** is enough to get accurate fitted B and G. Thus, B decreasing rate $dB(x)/B(x) = (268.8 x-261.2)/(134.4x^2-261.2x+234)$, G decreasing rate $dG(x)/G(x) = (-274.2x-120.9)/(-137.1x^2-120.9x+165)$. Let dB(x)/B(x) equals to dG(x)/G(x), we get x = 0.1468. This concentration is very similar to the limits of the concentration of nonadjacent carbon vacancies 1/6, indicating nonadjacent carbon vacancies can enhance Pugh's ratio (G/B).

Error	Linear m	nodel Poly1	Linear model Poly2				
-	B(x) =	G(x) =	B(x) =	G(x) =			
	-191.7x+227.9	-191.8 <i>x</i> +171.2	$134.4x^2-261.2x+234$	$-137.1x^2-120.9x+165$			
SSE	96.3	106.2	11.41	17.81			
RMSE	4.006	4.207	1.511	1.887			
Error	Linear model Poly3						
-	B	(x) =	G(x) =				
	8.917 <i>x</i> ³ +127.9	$2x^2-260.1x+233.9$	$352.2x^3 - 392.9x^2 - 77.37x + 163.9$				
SSE	1	1.41	9.27				
RMSE	1	.689	1.522				

Table SIII The tests of fitting model for bulk modulus B and shear modulus G to carbon vacancies

x.