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Figure S1. Example of a TGA run carried out to extract oxidation kinetic data.
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Figure S2. XRD pattern of BaO2 commercial sample.
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Figure S3. Derivative of weight for (a) reduction step in the first cycle and (b) oxidation step in 

the first cycle and reduction step in the second cycle.
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Figure S4. Comparison of the oxygen evolution during BaO2 reduction measured by mass 

spectrometry for two different heating ramps. Reduction was performed under a constant Ar flow 

of 50 ml min-1.
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Figure S5. XRD patters after 10 redox cycles using cooling rates of (a) 10 ºC min-1, (b) 5 ºC min-1 

and (c) 2 ºC min-1. • Unknown phase, I BaO2.
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Figure S6. BaCO3 decomposition simulated with HSC software.
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Figure S7. XRD analysis of BaO2 sample after reduction and exposure to ambient moisture, 

presenting Ba(OH)(H2O) crystal phase.
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SI-A Master plot construction

The rate of a solid-state reaction can be described as:

(S1)
𝑑𝛼
𝑑𝑡

= 𝐴exp ( ‒
𝐸𝑎

𝑅𝑇)𝑓(𝛼)

Where α the conversion fraction, A is the pre-exponential factor; Ea, is the activation energy, R 

the gas constant and f(α) the reaction model. The most representative models for solid-sate 

reactions are shown on Table S1. As TGA is used to study the reaction, α is defined by 

(S2)
𝛼 =

𝑚0 ‒ 𝑚𝑡

𝑚0 ‒ 𝑚𝑓

where m0 is initial weight, mt is weight at time t and mf is final weight.

By integrating Eq. S2 under isothermal conditions it is obtained the integral form of the kinetic 

rate law:

(S3)
𝑔(𝛼) = 𝐴exp ( ‒

𝐸𝑎

𝑅𝑇) 𝑡

For the master plot construction [S1,S2,S3], it is necessary to introduce the generalized time θ 

[S4]:

= (S4)
𝜃 =

𝑡

∫
0

exp ( ‒
𝐸𝑎

𝑅𝑇)𝑑𝑡  exp ( ‒
𝐸𝑎

𝑅𝑇)𝑡

Combining Eqs. S4 and S5 results in:

(S5)𝑔(𝛼) = 𝐴𝜃

From Eq. S6 and taking as reference point α = 0.5 [S1] it is obtained:

(S6)

𝑔(𝛼)
𝑔(0.5)

=
𝜃

𝜃0.5

where θ0.5 is the generalized time at α = 0.5. Then, by plotting g(α)/g(α0.5) against α for the most 

common kinetics models in solid-state reactions (Table S1) the theoretical master plot based on 
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the integral form of the kinetic data is constructed (Figure S12) . It can be appreciated that all the 

plots coincide at α = 0.5. As the kinetic analysis is carried out under isothermal conditions, the 

exponential term in Eq. S5 is constant. Then it can be established that:

(S8)

𝑔(𝛼)
𝑔(0.5)

=
𝑡

𝑡0.5

By representing t/t0.5, experimental data obtained by TGA, against α and comparing it with the 

theoretical master plot curves it will be possible to discern the kinetic model of the reaction.
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Table S1. Representative gas-solid kinetic models used in this work.
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Figure S8. Theoretical master plot curves in integral form representing g(α)/ g(0.5) as a function 

of α for the different kinetic models.
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