Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Electronic supplementary information for "Probing the thermal stability and decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations"[†]

Matteo Aramini,*^{*a*} Johannes Niskanen,^{*a*} Chiara Cavallari, ^{*b,c*} Daniele Pontiroli, ^{*c*} Abdurrahman Musazay, ^{*a*} Michael Krisch, ^{*d*} Mikko Hakala ^{*a*} Simo Huotari *^{*a*}

Fig. S1 Selected region of the Raman spectrum of the Mg_2C_{60} sample treated at 700°C.

Figure S1 reports a selected region of the Raman spectrum of the sample treated at 700° C.

The spectrum can be clearly attributed to intercalated fullerene compounds, and shows the emergence of typical Hg(7) and Ag(2) Raman lines at 1426 and 1457 cm⁻¹, respectively¹. An empirical rule based on existing literature states that the latter is shifted to

lower wavenumbers by 6-7 cm⁻¹ for every electron transferred to C_{60} and 5 cm⁻¹ per polymer bond² due to the softening of the bond stretching modes as the electrons occupy the antibonding molecular orbitals. The shift of Ag(2) mode with respect to its energy in pristine C_{60} (1469 cm⁻¹) suggests a charge transfer close to 2 electrons and is in agreement with the picture of

^a Department of Physics, University of Helsinki, Gustav Hällströmin katu 2, P.O. Box 64 00014 Helsinki, Finland; Corresponding authors: Tel +358(0)2941-50638, E-mail address; matteo.aramini@helsinki.fi, E-mail address; simo.huotari@helsinki.fi

intercalated magnesium suggested by X-ray Raman scattering.

References

- 1 Z. Dong, P. Zhou, J. Holden, P. Eklund, M. Dresselhaus and G. Dresselhaus, *Phys. Rev. B*, 1993, **48**, 2862–65.
- 2 T. Wagberg, P. Stenmark and B. Sundqvist, J. Phys. Chem. Solids,, 2004, 65, 317–20.

^b Institut Laue Langevin, BP 156, 71 Avenue des Martyrs, 38000, Grenoble, France

 $^{^{\}rm c}$ Dipartimento di Fisica e Scienze della Terra, Università degli studi di Parma, Viale delle Scienze 7/a, 43124 Parma, Italy

^d European Synchrotron Radiation Facility, BP 220, 71 Avenue des Martyrs, 38000, Grenoble, France