Supporting Information of

Improving Dipolar Recoupling for Site-Specific Structure and Dynamics Studies in Biosolids NMR: Windowed RN-Symmetry Sequences

Xingyu Lu^{1,2}, Huilan Zhang^{1,2}, Manman Lu^{1,2}, Alexander J. Vega¹, Guangjin Hou^{1,2*}, Tatyana Polenova^{1,2*}

¹Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States;

²Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.

Author Email Address:

luxingyu@udel.edu,zhang@udel.edu,lumm@udel.edu,lexvega@comcast.net,hou@udel.edu,tpolenov@udel.edu

Received Date:

Title Running Head:

Corresponding Authors:

Guangjin Hou, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, email: hou@udel.edu;

Tatyana Polenova, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, e-mail: tpolenov@udel.edu, Tel. (302) 831-1968, FAX (302) 831-6335.

Keywords:

Protein dynamics, magic angle spinning NMR, dipolar coupling, PARS

Tables:

Acquisition	ω3	ω2	ω1	Processing	ω3	ω2	ω1		
U- ¹⁵ N-labeled N-acetyl-valine (NAV)									
¹ H- ¹⁵ N wPARS 2D		1k complex; sw=20 kHz;	16 real; sw=7 kHz;	NMRPipe		90-degree sinebell; FFT;	FFT;		
U- ¹³ C, ¹⁵ N-Met-Leu-Phe (MLF) tripeptide									
¹ H- ¹⁵ N wPARS 2D		1k complex; sw=20 kHz;	16 real; sw=7 kHz;	NMRPipe		90-degree sinebell; FFT;	FFT;		
¹ H- ¹³ C wPARS 2D		1k complex; sw=50 kHz;	16 real; sw=16.7 kHz;	NMRPipe		90-degree sinebell; FFT;	FFT;		
¹ H- ¹³ C wPARS 3D	1k complex; sw=50 kHz;	200 real; sw = 30 kHz;	16 real; sw=16.7 kHz;	NMRPipe	45-degree sinebell; FFT;	45-degree sinebell; forward linear prediction of 200 points; FFT;	FFT;		
U- ¹³ C, ¹⁵ N-dynein light chain (LC8) protein									
¹ H- ¹³ C wPARS 3D	1k complex; sw=50 kHz;	200 real; sw = 30 kHz;	16 real; sw=16.7 kHz;	NMRPipe	45-degree sinebell; FFT;	45-degree sinebell; forward linear prediction of 200 points; FFT;	FFT;		

Table S1. Summary of acquisition and processing parameters for the 2D/3D wPARS dipolar coupling measurements.

Table S2. Dipolar couplings for aromatic sidechains in U-¹³C,¹⁵N-LC8 prepared with and without Cu(II)-EDTA doping: (H) Histidine, (W) Tryptophan, (F) Phenylalanine, and (Y) Tyrosine. The dipolar lineshapes were recorded by 3D R10₁³-based ¹H-¹³C(¹³C) wPARS.

Desidue	Dipolar Cou	pling (kHz)	ŗ	i D					
Residue	Without	With Cu ²⁺	Without	With Cu ²⁺					
Carbons on rigid residues									
H55 (Cδ)	21.8	22.9	0.02	0.34					
W54 (Cδ2)	19.6	21.0	0.39	0.17					
W54 (Cε2)	19.9	19.7	0.20	0.24					
W54 (Cε3)	21.2	19.6	0.25	0.05					
W54 (Cζ2)	21.5	21.6	0.22	0.26					
W54 (Cζ3)	22.8	21.3	0.42	0.26					
W54 (Cη2)		21.8		0.19					
Carbons on mobile residues									
F62 (C δ)	19.2	20.2	0.22	0.06					
F76 (Cδ)	12.2	12.6	0.52	0.24					
Y41 (Cδ)	13.2	12.8	0.98	0.86					
Y41 (Cε)	13.4	10.8	0.99	0.96					
Υ75 (Cδ)	11.3	11.4	0.86	0.87					
Υ75 (Cε)	11.5	11.4	0.88	0.95					

Figure S1. Experimental performance of windowed-DIPSHIFT 2D in MLF. Errors (expressed in %) in ¹H-¹⁵N dipolar couplings plotted as a function of the ¹H rf field mismatch, shown in % of the correct theoretical value. Different window fractions of 0%, 25%, 50% were tested and shown as filled squares, triangles and circles, respectively. Experiments were performed with MAS frequency of 14 kHz.

Figure S2. ${}^{1}\text{H}{}^{13}\text{C}_{\alpha}$ dipolar line shapes of MLF extracted from 2D wPARS (top row) and from 3D R10₁³-based ${}^{1}\text{H}{}^{13}\text{C}({}^{13}\text{C})$ wPARS (three bottom rows). Experimental and fitted lineshapes are shown as solid and dashed lines, respectively. Experiments were performed with MAS frequency of 20 kHz.

Figure S3. ${}^{1}\text{H}{}^{13}\text{C}\alpha$ dipolar line shapes for 50 residues possessing resolved cross peaks in U- ${}^{13}\text{C},{}^{15}\text{N}{}^{-1}\text{C}8$ 3D wPARS spectra. The experimental and the best-fit line shapes are shown as black solid lines and blue dashed lines, respectively. The samples were prepared without (top) and with (bottom) Cu(II)-EDTA doping.

Figure S4. Top: Dipolar line shapes for U-¹³C,¹⁵N-LC8 residues exhibiting differences in dipolar couplings of more than 1.5 kHz in samples prepared with and without Cu(II)-EDTA doping. Experimental and best-fit line shapes are shown as black solid lines and blue dashed lines, respectively. Bottom: 2D planes of the 3D wPARS spectra containing the corresponding cross peaks.

Figure S5. Chemical shift perturbations observed in nanocrystalline U-¹³C,¹⁵N-LC8 with and without Cu(II)-EDTA doping, compared to the dipolar coupling deviations as shown in Figure 5.

Figure S6. ${}^{1}\text{H}{}^{-13}\text{C}(\delta,\varepsilon,\zeta)$ dipolar line shapes for sidechains of 6 representative residues possessing resolved cross peaks in U- ${}^{13}\text{C},{}^{15}\text{N}{}^{-1}\text{LC8}$ 3D wPARS spectra. The experimental and the best-fit line shapes are shown as black solid lines and blue dashed lines, respectively. The samples were prepared without (top) and with (bottom) Cu(II)-EDTA doping.

Simpson data fitting scripts:

```
spinsys {
         channels 1H 13C
        nuclei 1H 13C
#
        Euler: any theta phi
        dipole 1 2 22800 0 0 0
#
        Euler angles: phi theta any
        shift 1 0p 0p 0 0 0 0
        shift 2 0p 0p 0 0 0 0
}
par {
 proton frequency 599.8e6
 spin rate
               14000
 np
             16
              rep168
 crystal file
 gamma angles 13
 verbose
               1101
 start operator I2x
 detect_operator I2p
 variable N
               10
 variable n
               1
 variable v
               3
 variable Hdec 125000
 variable rf
               70000
             spin rate/2/n
 SW
# ntail is number of tail points in FID for baseline correction (0: no correction)
         variable ntail 0
# DCCinit is starting value of DCC fit
         variable DCCinit 10000.0
# LBinit is starting value of line broadening fit
         variable LBinit 50.0
# fcent is half width (Hz) of central region ignored by fit
         variable fcent 500
# fedge is half width (Hz) of total region included in fit
         variable fedge 3500
}
proc pulseq {} {
 global par
 maxdt 1.0
 set tr [expr 1.0e6/$par(spin rate)]
 set tRn [expr $par(n)*$tr/$par(N)]
         set delay 0
#
         set delay [expr $tRn/4.0]
#
        set delay [expr $tRn/2.0]
 set t90 [expr ($tRn-$delay)/2.0]
 set ph [expr 180.0* spar(v)/ spar(N)]
 reset
 for {set i 0} {i < [expr <math>par(N)/2]} {incr i} {
  pulse $t90 $par(rf) $ph 0 0
```

```
delay $delay
  pulse $t90 $par(rf) $ph 0 0
  pulse $t90 $par(rf) [expr - $ph] 0 0
  delay $delay
  pulse $t90 $par(rf) [expr - $ph] 0 0
 }
 pulseid 1 0 0 500000 0
 for {set i 0} {i < [expr $par(N)/2]} {incr i} {
  pulse $t90 $par(rf) [expr $ph+180.0] 0 0
  delay $delay
  pulse $t90 $par(rf) [expr $ph+180.0] 0 0
  pulse $t90 $par(rf) [expr -$ph+180.0] 0 0
  delay $delay
  pulse $t90 $par(rf) [expr -$ph+180.0] 0 0
 }
 pulseid 1 0 0 500000 0
 store 1
 reset
 acq
 for \{set \ i \ 1\} \{\{i < (np)\}\} \{incr \ i\}
  reset
  prop 1 $i
  acq
 }
}
proc minuit {} {
         global mn g par
 set tr [expr 1.0e6/$par(spin_rate)]
 set tRn [expr $par(n)*$tr/$par(N)]
         set delay 0
#
         set delay [expr $tRn/4.0]
#
         set delay [expr $tRn/2.0]
 set t90 [expr ($tRn-$delay)/2.0]
         set f [fsimpson [list [list dipole 1 2 aniso $mn(DCC)]]]
         faddlb $f $mn(LB) 0
# subtract tail
         if \{spar(ntail) > 0\}
           set tail 0.
           for {set m 1} {m \le par(ntail)} {incr m} {
                  set n [expr par(np) + 1 - m]
                  set fn [findex $f $n -re]
                  set tail [expr $tail + $fn/$par(ntail)]
           }
           for {set n 1} {n \le par(np)} {incr n} {
                  set fn [findex $f $n -re]
                  set fn [expr $fn - $tail]
                  fsetindex $f $n $fn 0
            }
         fzerofill $f 256
```

```
fft $f
```

```
# scaling and base-line adjustment
         set jcent [expr 128*($par(sw) - 2*$par(fcent))/$par(sw)]
         set jedge [expr 128*($par(sw) - 2*$par(fedge))/$par(sw)]
         set j1 0.
         set f1 0.
         set f2 0.
         set g1 0.
         set fg 0.
# in the summation, do not use {set j $jedge} because jedge is not an integer
         for \{set \ j \ 1\} \{ \{ j \le  \{sicent\} \{incr \ j\} \{
         if {$j > $jedge} {
                  set fj [findex $f $j -re]
                  set gj [findex $g $j -re]
                  set j1 [expr $j1 + 1]
                  set f1 [expr f1 + fj]
                  set f2 [expr $f2 + $fj*$fj]
                  set g1 [expr $g1 + $gj]
                  set fg [expr $fg + $fj*$gj]
         }
         }
         set c [expr $f2*$j1 - $f1*$f1]
         set a [expr ($fg*$j1 - $f1*$g1)/$c]
         set b [expr ($f2*$g1 - $f1*$fg)/$c]
         for {set j 1} {j \le 256} {incr j} {
                  set fj [findex $f $j -re]
                  set gj [findex $g $j -re]
                  if \{\text{spar(output)} == 2\} {fsetindex g \in 0}
                  set fj [expr a*fj + b]
                  if \{set gj 0\}
                  fsetindex $f $j $fj $gj
         }
         set chi2 0.
         set rms [frms $f $g -re {{-3500 -500} {500 3500}}]
         puts "$mn(DCC) $mn(LB)
                                           $rms $chi2"
         if \{\text{set rms $chi2}\}\
         if {$rms < $par(bestrms)} {</pre>
                  set par(bestrms) $rms
                  fsave $f $par(name).fit
         }
         funload $f
         return $rms
}
proc main {} {
         global par mn g
         if \{\text{spar}(\text{exptype}) == 1\}
          set g [fload "PARSexp.fid"]
# subtract tail
          if \{ par(ntail) > 0\} {
           set tail 0.
           for {set m 1} {m \le par(ntail)} {incr m} {
```

```
set n [expr par(np) + 1 - m]
        set gn [findex $g $n -re]
        set tail [expr $tail + $gn/$par(ntail)]
  }
  for \{ set n 1 \} \{ n \le par(np) \} \{ incr n \} \}
        set gn [findex $g $n -re]
        set gn [expr $gn - $tail]
        fsetindex $g $n $gn 0
  }
 }
 fzerofill $g 256
 fft $g
} else {
set g [fload "example.spe"]
}
set par(bestrms) 1e6
puts " DCC
              LB
                      rms
                              chi^2"
mnpar DCC $par(DCCinit) 100
mnpar LB $par(LBinit) 50
mnminimize
puts "DCC $mn(DCC)"
puts "LB $mn(LB)"
if {$par(dev) == 1} {puts "rms $par(bestrms)"}
if {$par(dev) == 2} {puts "chi^2 $par(bestrms)"}
funload $g
```

```
}
```