Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes

Ruttala Devivaraprasad, Tathagata Kar, Arup Chakraborty, Ramesh Kumar Singh, and

Manoj Neergat*

Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB),

Powai, Mumbai–400076, India

Fig. S1 CVs of Pt-NC (*a*), Pt-CO (*b*) and Pt-PC (*c*) nanoparticles in argon-saturated 0.1 M NaOH electrolyte recorded at a scan rate of 50 mV s⁻¹.

Fig. S2 Voltammograms of Pt-PC (*a*), Pt-NC (*b*) and Pt-CO (*c*) nanaoparticles upto 0.8 V (25th cycle upto 200th cycle) in argon-saturated 0.5 M H₂SO₄ electrolyte recorded at a scan rate of 50 $mV s^{-1}$.

Fig. S3 H_{upd} region of the voltammograms of Pt-NC (*a*), Pt-CO (*b*), and Pt-PC (*c*) nanoparticles in argon-saturated 0.5 M H₂SO₄ electrolyte (every 25th cycle upto 200 cycles). Inset shows the respective complete voltammograms on cycling upto 1.0 V recorded at a scan rate of 50 mV s⁻¹.

Fig. S4 Comparison of the CVs (initial and after 0.6 V cycling (200 cycles)) followed by the CVs recorded upto 0.8 V (2 cycles) and 1.2 V (25^{th} cycle) of Pt-NC (a), Pt-CO (b), and Pt-PC (C) at scan rate of 50 mV s⁻¹in test electrolyte H₂SO₄ prepared using Ultrapur water (Wasser Agua Eau Água Acqua) obtained from Merck.

Fig. S5 Comparison of CVs after 0.6 V cycling (200^{th} cycle) and CVs after excursion to 0.8 V (2 cycles) with change in concentration of the test electrolyte H₂SO₄; left panel Pt-NC and right panel Pt-CO.

Fig. S6 Comparison of the CVs (initial and after 0.6 V cycling (200 cycles)) followed by recording the CV upto 0.8 V (2 cycles) and 1.2 V (25^{th} cycle) of Pt-NC in 0.1 M HClO₄ electrolyte recorded at a scan rate of 50 mV s⁻¹.

Fig. S7 Comparison of the CVs of Pt-PC (initial and after 0.6 V cycling (200 cycles)) followed by recording the CV upto 1.2 V and 1.2 V 25^{th} cycle in 0.5 M H_2SO_4 electrolyte recorded at a scan rate of 50 mV s⁻¹.

Fig. S8 Comparison of the CVs of Pt-NC (initial and after 1.2 V cycling (25 cycles)) followed by recording the CV upto 0.6 V (200 cycles) and 0.8 V (2 cycles) and 1.2 V in 0.5 M H₂SO₄ electrolyte recorded at a scan rate of 50 mV s^{-1} .

Fig. S9 Comparison of the CVs (initial and after 0.6 V cycling (200 cycles)) followed by recording the CV upto 0.8 V (2 cycles) and 1.2 V (25th cycle) (dotted lines); repeating the sequential experiment on the same electrode (solid lines) for both (a) Pt-NC and (b)Pt-CO.

Fig. S10 Comparison of the CVs of Pt-NC (intial and after cycling in the potential range of 0.95-1.2 V for 200 cycles) in argon-saturated 0.5 M H₂SO₄ electrolyte recorded at a scan rate of 50 mV s^{-1} . Inset shows the complete cycling between (0.95–1.2 V)(200 cycles).

Fig. S11 Intial cycling of Pt-NC (*a*) and Pt-CO (*b*) nanoparticles upto 1.2 V in argon-saturated 0.5 M H_2SO_4 electrolytes recorded at a scan rate of 50 mV s⁻¹.

Fig. S12 Voltammograms of Pt-NC nanoparticles upto (*a*) 0.9 V and (*b*) 1.2 V (25^{th} cycle upto 200th cycle) in argon-saturated 0.1 M NaOH electrolyte recorded at a scan rate of 50 mV s⁻¹.

Fig. S13 Voltammograms of Pt-CO nanoparticles upto (a) 0.9 V and (b) 1.2 V (25^{th} cycle upto 200th cycle) in argon-saturated 0.1 M NaOH electrolyte recorded at a scan rate of 50 mV s⁻¹.