Supplementary information materials

Large polarization and dielectric response in epitaxial SrZrO₃ films

Hao Tian,^a Ai-Jie Mao, *^a Hong Jian Zhao, ^b Yingqi Cui,^a Hui Li,^c and Xiao-Yu Kuang*^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

^b Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

^c Laboratoire Aimé Cotton, CNRS, Université, Paris-Sud, ENS Cachan, Université Paris-Saclay, Orsay 91405, France

Fig.S1. Calculated phonon-dispersion curves of cubic $SrZrO_3$ (a) at LDA level and (b) at GGA level within the density functional perturbation theory (DFPT)¹ using the PHONOPY² code. The imaginary frequencies (unstable modes) are described as negative numbers.

	FE mode	AFD mode		Add	Additional mode		
	Γ_4^-	M_3^+	R_4^+	Γ_5^-	X_5^+	M_5^-	
LDA	102 <i>i</i>	187 <i>i</i>	198 <i>i</i>	27 <i>i</i>	16 <i>i</i>	74 <i>i</i>	
GGA	74 <i>i</i>	165 <i>i</i>	175 <i>i</i>	_	_	44 <i>i</i>	
GGA-WC ³	87 <i>i</i>	167 <i>i</i>	179 <i>i</i>	_	_	50 <i>i</i>	

Table S1. The unstable modes in cubic SrZrO₃.

Table S2. The optimized lattice parameters a, b, c and reduced atomic coordinates x, y, z of orthorhombic *Pbnm* phase as obtained from LDA and GGA functionals compared with the experimental measurement.

	Atoms	Wyck.	С	Coordinates			
	Atoms		x	у	Ζ		
LDA	Sr	4c	0.009	0.537	0.25		
<i>a</i> = 5.731 Å	Zr	4a	0	0	0		
<i>b</i> = 5.806 Å	01	4c	-0.083	-0.024	0.25		
<i>c</i> = 8.132 Å	O2	8d	0.210	0.289	0.044		
GGA	Sr	4c	0.007	0.533	0.25		
<i>a</i> = 5.838 Å	Zr	4a	0	0	0		
<i>b</i> = 5.903 Å	01	4c	-0.077	-0.021	0.25		
<i>c</i> = 8.285 Å	O2	8d	0.213	0.287	0.041		
Expt. ⁴	Sr	4c	0.004	0.524	0.25		
<i>a</i> = 5.796 Å	Zr	4a	0	0	0		
<i>b</i> = 5.817 Å	01	4c	-0.687	-0.013	0.25		
<i>c</i> = 8.205 Å	02	8d	0.215	0.284	0.036		

Table S3. The optimized lattice parameters *a*, *b*, *c* and reduced atomic coordinates *x*, *y*, *z* of the *P4mm*, *I4/mcm*, *ab-ePbnm*, *c-ePbnm*, *Ima*2, *Pmc*2₁(I) and *Pmc*2₁(II) phases in SrZrO₃ film for given strain. The symmetry of different equilibrium phases are determined by FINDSYM⁵ code.

	Atoms	Wyck.	Coordinates		
			x	у	Ζ
P4mm	<i>a</i> = 3.770 Å, <i>b</i> = 3.770 Å, <i>c</i> = 5.123 Å				
(-7.6%)	$\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 90^{\circ}$				
	Sr	1a	0	0	0.164
	Zr	1b	0.5	0.5	0.613
	O1	1b	0.5	0.5	-0.03
	02	2c	0.5	0	0.471
I4/mcm	<i>a</i> = 5.536 Å, <i>b</i> = 5.536 Å, <i>c</i> = 8.460 Å				
(-4.0%)	$\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 90^{\circ}$				
	Sr	4b	0	0.5	0.25
	Zr	4c	0	0	0
	O1	8h	0.675	0.175	0
	02	4a	0	0	0.25
ab-ePbnm	<i>a</i> = 5.712 Å, <i>b</i> = 8.103 Å, <i>c</i> = 5.786 Å				
(-0.7%)		$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 90^{\circ}$			
	Sr1	2e	0.009	0.25	0.038
	Sr2	2e	0.491	0.25	0.538
	Zr1	2b	0.5	0	0
	Zr2	2c	0	0	0.5
	01	2e	-0.083	0.25	0.476
	02	2e	0.583	0.25	-0.024
	03	4f	0.289	0.456	0.289
	O4	4f	0.789	0.544	0.211

c-ePbnm	<i>a</i> = 5.798 Å, <i>b</i> = 8.101 Å, <i>c</i> = 5.798 Å						
(+0.5%)	$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 90^{\circ}$						
	Sr	4c	0.465	0.25	0.008		
	Zr	4a	0	0	0		
	01	4c	0.023	0.25	-0.085		
	O2	8d	0.786	-0.045	0.714		
Ima2	<i>a</i> = 7.885 Å, <i>b</i> = 6.028 Å, <i>c</i> = 6.028 Å						
(+4.5%)	$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 90^{\circ}$						
	Sr	4b	0.25	0.492	0.731		
	Zr	4a	0	0	0.745		
	01	8c	0.454	0.255	0.009		
	O2	4b	0.25	0.590	0.293		
$Pmc2_1(I)$	<i>a</i> = 7.885 Å, <i>b</i> = 6.028 Å, <i>c</i> = 6.028 Å						
(+4.5%)	$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 90^{\circ}$						
	Sr1	2b	0.5	0.742	0.030		
	Sr2	2a	0	0.758	0.028		
	Zr	4c	0.25	0.25	0.014		
	01	2b	0.5	0.840	0.466		
	O2	2a	0	0.660	0.467		
	03	4c	0.704	0.494	0.251		
	O4	4c	0.796	-0.004	0.749		
$Pmc2_1(II)$	C	a = 3.792 Å,	<i>b</i> = 6.114 Å	, <i>c</i> = 6.114	Å		
(+6.0%)	$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 90^{\circ}$						
	Sr	2b	0.5	0.179	0.058		
	Zr	2a	0	0.717	0.025		
	01	2b	0.5	0.224	0.462		
	O2	2a	0	-0.060	0.273		
	03	2a	0	0.567	0.692		

Fig .S2. The projected (a-e) and total (f) density of states for SZO films with different misfit strain.

According to Fig. 5 and Fig .S2, the total density of states (TDOS) and projected density of states (PDOS) in paraelectric phases clearly show the strong hybridization between Zr d and O p orbitals, which are mainly located from -5 eV to 0 eV (that is, the Fermi level, which is set to zero). In detail, the *c-ePbnm* and *I4/mcm* phases exhibit the energy overlap and hybridization peaks between Zr d and O p orbitals (not only in-plane O_1 p orbital but also out-of-plane O_2 p orbital). However, the *P4mm* phase possesses stronger hybridization between Zr d and out-of-plane O_2 p orbitals (especially at -4 eV), while the orbital hybridization between Zr d and out-of-plane O_2 p is mainly shifted to about -1.5 eV, which implies highly covalent interaction

between Zr d and in-plane O_1 p orbitals and corresponds to the complete vanishing oxygen octahedral tilting as well as the relative z-displacements of these two atoms. As for the tensile strain, the hybridization between Zr d and O p orbitals is also enhanced. Due to the lower symmetry induced by in-plane strain, more hybridization peaks emerge between different O p and Zr d orbitals in the distinct *Pmc2*₁ phases. According to Table 1 and Fig .S2, the stronger hybridization also corresponds to the enhanced polarization with the increase of misfit strain. Practically, the major hybridization peaks are located from -3.5 eV to -2 eV at 4.5% tensile strain, while a stronger hybridization peak emerges at -4 eV and there are relatively obvious hybridization peaks at the range between -2 eV and 0 eV at 6% tensile strain. In summary, the DOS demonstrates that the hybridization between Zr d and O p orbitals becomes stronger in the presence of strain, which corresponds to the enhanced polarization with the increase of misfit strain.

Fig .S3. Calculated out-of-plane component of static dielectric tensor ε_{zz}^0 in the *I4/mcm* phase, as a function of compressive strain.

References

- 1 M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller and F. Bechstedt, *Phys. Rev. B*, 2006, **73**, 045112.
- 2 A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106.
- 3 S. Amisi, E. Bousquet, K. Katcho and P. Ghosez, *Phys. Rev. B*, 2012, **85**, 064112.
- 4 B. J. Kennedy, C. J. Howard and B. C. Chakoumakos, *Phys. Rev. B*, 1999, **59**, 4023.
- 5 H. T. Stokes and D. M. Hatch, J. Appl. Crystallogr., 2005, 38, 237–238.