Supporting Information

Enhanced room-temperature NO₂ response of NiO-SnO₂ nanocomposites induced by interface bonds at p-n heterojunction

Jian Zhang ^{a, c}, Dawen Zeng ^{a, c*}, Qiang Zhu ^a, Jinjin Wu ^b, Qingwu Huang ^b, Wan

Zhang ^a and Changsheng Xie ^a

^a State Key Laboratory of Materials Processing and Die Mould Technology,

Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road,

Wuhan 430074, China

^b Analytical and Testing Center, Huazhong University of Science and Technology

(HUST), No. 1037, Luoyu Road, Wuhan 430074, China

^c Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,

Wuhan 430062, China

Corresponding Author: Dr. Dawen Zeng* E-mail: dwzeng@hust.edu.cn

Fig. S1. Low- and high-magnification SEM images of the bare SnO₂.

Fig. S2. The full XPS spectra of the as-prepared samples.

Fig. S3. Dynamic response-recovery curves to NO_2 in the range of 5-60 ppm at room temperature.

(a) Bare NiO, (b) NiSn31, (c) NiSn11 and (d) NiSn13.

Fig. S4. The dynamic response-recovery curves of the bare SnO_2 to 30 ppm NO_2 at room temperature. (a) The first testing and (b) The second testing.

Fig. S5. Dynamic response curves of the mechanically mixed sample to different NO₂

concentrations at room temperature.

Fig. S6. N_2 adsorption-desorption isotherms (the inset shows the BJH pore-size distribution plots of the bare NiO and the NiSn11 nanocomposites)

Fig. S7. Schematics and band diagrams of the NiO-SnO₂ heterojunction (a) before and (b) after

contact.