ARTICLE TYPE

Chemically Functionalized Germanene for Spintronic Devices: A First Principles Study †

_

Jun Zhao,^{*a,c*} Hui Zeng,^{*b,c*‡}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

1 Stability of Functionalized Germanene

To examine the stability of the various functionalized germanene, we make use of the formation energies defined as $E_f = E(con) - E(ger) - \sum_i x_i \mu_i$, where E(con) and E(ger) are the total energies of functionalized confirmations and freestanding germanene monolayer, respectively. The x_i (i = H, O, F) is the molar fraction of the corresponding atoms in the attached ligand, and μ_i is the chemical potential of the constituents at a given state. We choose μ_i as the 1/2 total energies of the corresponding diatomic molecules (H_2 , O_2 , F_2)¹. The calculated $\Sigma_i x_i \mu_i$ is the chemical potential of the attached ligand*. The formation energies of differently functionalized germanene is summarized in Table S1. The formation energy defined above therefore can be regarded as a measure of the stability against molecular desorption from the germanene surface. As a result, the functionalized germanene nanaomaterials with more negative formation energies are more stable. The two-sided functionalizations are found to be systemically more stable than the one-sided functionalizations. This phenomenon is attributed to the higher symmetry of the fully functionalized nanostructures compared with the semi-functionalized counterparts, and the Ge atoms more approach to the sp^3 hybridization in the former case. The relative stability of the fully functionalized germanenes follows the sequence of F-germanene-F > F-germanene-H > O-germanene-H. For the semi-functionalized germanenes,

‡ Corresponding author. E-mail address: zenghui@yangtzeu.edu.cn

 Table 1 Formation energies per atom of optimized 2D Ge-based nanomaterials. The energies are given in eV per atom

Conformation	E_f
F-germanene-F	-1.60
F-germanene-H	-0.87
O-germanene-H	-0.07
germanene-CH3	-0.32
germanene-F	-0.85
germanene-OH	-0.33

the formation energies of the -OH functionalization and -*CH*₃ are rather similar. More specifically, the functionalized nanostructures are stabilized by fluorination in both fully- and semi-functionalized cases, which is due to the large difference in the dissociation energy between hydrogen (also oxygen) and fluorine molecules. Consequently, the relative stability of the semi-functionalized germanenes decreases in this order: germanene-F > germanene-OH > germanene-*CH*₃. It is noted that all the examined functionalized germanenes are exothermic evaluated in terms of their formation energies. The actual conformations of the semi-functionalized germanenes, however, could be more complex than the fully functionalized case, which are associated with the reaction paths during chemical processing³.

References

- O. Leenaerts, H. Peelaers, A. D. Hernndez-Nieves, B. Partoens and F. M. Peeters, *Phys. Rev. B*, 2010, 82, 195436.
- 2 R.-W. Zhang, C.-W. Zhang, W.-X. Ji, S.-S. Li, S.-J. Hu, S.-S. Yan, P. Li, P.-J. Wang and F. Li, *New J. Phys.*, 2015, **17**, 083036.
- 3 D. Heidrich, *The Reaction Path in Chemistry: Current Approaches and Perspectives*, Springer, Netherlands, 1st edn, 1995.

^a School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

^b School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

^c School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, Hubei, China.

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

^{*} For the methyl functionalization, the chemical potential is obtained by calculating the CH_3 molecule, similar to the previous study of C_2H molecule².

This journal is © The Royal Society of Chemistry [year]