Interaction between Cu and CNT triggered their mutual role in the enhanced photodegradation of *p*-chloroaniline

N.F. Khusnun¹, A.A. Jalil^{1,2*}, S. Triwahyono³, N.W.C. Jusoh¹, A. Johari^{1,2} and K. Kidam^{1,2}

¹Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ²Institute of Future Energy, Centre of Hydrogen Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ³Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

*To whom correspondence should be address,

Aishah Abdul Jalil (Ph.D.)

Tel: 60-7-5535581 Fax: 60-7-5588166

Email: <u>aishah@cheme.utm.my</u>

Supplementary materials

Fig. S1. N₂ adsorption-desorption isotherm plots of A) CNT B) 1 wt% Cu/CNT C) 3 wt% Cu/CNT D) 5 wt% Cu/CNT and E) pore size distribution of the catalysts. Insert Figure: pore size distribution at smaller diameter.

Fig. S2. (A) Effect of pH on degradation of PCA [$C_{PCA} = 10 \text{ mg } L^{-1}$, $W = 0.375 \text{ g} L^{-1}$, t = 1 h (dark), 5h (UV), 3 wt% Cu/CNT] and (B) The isoelectric point (pH_{PZC}) of 3 wt% Cu/CNT catalyst.

Fig. S3. Effect of catalyst dosage on degradation of PCA. [$C_{PCA} = 10 \text{ mg } L^{-1}$; pH =7; t = 1h (dark), 5h (UV); 3 wt% Cu/CNT]

Fig. S4 Mass spectra of PCA (m/z 127) and CO₂ (m/z 44) along the photocatalytic testing.

Fig. S5 Mass spectra of PCA's intermediate product at A) 0 hr, B) 1hr, C) and D) 6hr.