Supplementary Information for:

Dehydrocoupling Routes to Element-Element Bonds Catalysed by Main Group Compounds

Rebecca L. Melen*

School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.

1. Tables and Figures

Alcohol	Silane	Product	Catalyst Loading	Time /h	Yield*
СуОН	Ph₃ <mark>Si</mark> -H	CyO- <mark>S</mark> iPh ₃	2 mol%	1	95
ⁱ Pr ₂ C(H)OH	Ph₃ <mark>Si</mark> -H	ⁱ Pr ₂ C(H)O-SiPh ₃	2 mol%	2	95
1-AdOH	Et₃ <mark>S</mark> iH	1-AdO- <mark>Si</mark> Et ₃	1 mol%	<1	79
H ₂ C=C(H)CH ₂ OH	Ph₃ <mark>Si</mark> -H	H ₂ C=C(H)CH ₂ O-SiPh ₃	2 mol%	4	95
HC=CCH ₂ OH	Ph₃ <mark>Si</mark> -H	HC=CCH ₂ O-SiPh ₃	8 mol%	2	95
BrCH ₂ CH ₂ OH	Ph ₃ Si-H	BrCH ₂ CH ₂ O-SiPh ₃	2 mol%	1	93
(p-OMe)C ₆ H₄OH	Ph₃ <mark>Si</mark> -H	(<i>p</i> -OMe)C ₆ H ₄ O-SiPh ₃	5 mol%	20	95
(<i>p</i> -OBn)C ₆ H₄OH	Ph₃ <mark>Si</mark> -H	(<i>p</i> -OBn)C ₆ H ₄ O- <mark>Si</mark> Ph ₃	5 mol%	20	92
(p-CO ₂ Me)C ₆ H ₄ OH	Ph₃ <mark>Si</mark> -H	(p-CO ₂ Me)C ₆ H ₄ O-SiPh ₃	5 mol%	20	87
MesOH	Ph₃ <mark>Si</mark> -H	Mes O-Si Ph₃	2 mol%	2	72
MesOH	Et₃ <mark>Si-</mark> H	Mes O-<mark>Si</mark>Et ₃	2 mol%	2	95
MesOH	Me ₂ ^t Bu <mark>Si</mark> -H	Mes O-<mark>Si</mark>Me 2 ^t Bu	2 mol%	12	95
MesOH	Me₂Ph <mark>Si</mark> -H	Mes O-Si Me ₂ Ph	2 mol%	1	80
MesOH	Me ₂ Cl <mark>Si</mark> -H	Mes O-<mark>Si</mark>Me 2Cl	2 mol%	2	79
MesOH	Me ₂ H <mark>Si</mark> -H	Mes O-<mark>S</mark>i Me₂H	2 mol%	<1	95

Table S1. Si-O dehydrocoupling reactions catalysed by $B(C_6F_5)_3$.¹

Figure S1 The highly electrophilic phosphonium ion in $[(C_6F_5)_3PF][B(C_6F_5)_4]^2$

 Table S2 Dehydrocoupling of alcohols and silanes using a phosphonium ion catalyst.³

$$\begin{array}{c} \text{Catalyst} \\ \text{E}-\text{H} + \text{H}-\text{SiR}_{3} & \underline{1.5 \text{ mol}} \\ \end{array} \xrightarrow{\text{E}-\text{SiR}_{3}} + \text{H}_{2} \\ \end{array} \begin{array}{c} \text{F} \\ \text{C}_{6}\text{F}_{5} & \underline{F} \\ \text{C}_{6}\text{F}_{5} \\ \end{array} \xrightarrow{(e)} \\ \text{C}_{6}\text{F}_{5} \\ \end{array} \xrightarrow{(e)} \\ \text{C}_{6}\text{F}_{5} \\ \end{array} \begin{array}{c} \text{C}_{6}\text{F}_{5} \\ \text{C}_{6}\text{F}_{5} \\ \end{array} \xrightarrow{(e)} \\ \text{B}(\text{C}_{6}\text{F}_{5})_{4} \\ \end{array}$$

Catalyst

E-H	Silane	Product	Time /h	Yield*
PhOH	Et₃ <mark>Si</mark> H	Ph O-Si Et₃	2	>99
(<i>o</i> -Me) ₂ (C ₆ H ₃)OH	Et₃ <mark>Si</mark> H	(<i>o</i> -Me) ₂ (C ₆ H ₃) O-Si Et ₃	2	>99
p-OMe(C ₆ H ₄)OH	Et₃ <mark>Si</mark> H	<i>p</i> -OMe(C ₆ H ₄)O-SiEt ₃	18	>99
<i>p</i> -Ме(С ₆ Н ₄)ОН	Et₃ <mark>Si</mark> H	<i>p</i> -Me(C ₆ H ₄) O-Si Et ₃	3	>99
C ₆ F₅OH	Et₃ <mark>Si</mark> H	$C_6F_5O-SiEt_3$	24	>99
$p-C_8H_{17}(C_6H_4)CO_2H^{\dagger}$	Et₃ <mark>Si</mark> H	<i>p</i> -C ₈ H ₁₇ (C ₆ H ₄)CO ₂ -SiEt ₃	1	>99

Conditions: 1 mol% catalyst, silane (1.1 eq.) and alcohol (1 eq.) in C_6D_5Br or CD_2Cl_2 (1.0 mL) at 25°C.*Yields measured by ¹H-NMR spectroscopy. +1.5 mol% catalyst was used.

Table S3 Dehydrocoupling of thiols and silanes using a phosphonium ion catalyst.³

$$\begin{array}{c} \text{Catalyst} \\ \text{E}-\text{H} + \text{H}-\text{SiR}_{3} & \underline{1.5 \text{ mol}} \\ \end{array} \xrightarrow{\text{E}-\text{SiR}_{3}} + \text{H}_{2} \\ \end{array} \begin{array}{c} \text{F} \\ \text{C}_{6}\text{F}_{5} & \underline{C}_{6}\text{F}_{5} \\ \text{C}_{6}\text{F}_{5} \\ \end{array} \begin{array}{c} \overset{\bigcirc}{\text{B}(\text{C}_{6}\text{F}_{5})_{4}} \\ \end{array} \end{array}$$

Catalyst

E-H	Silane	Product	Time /h	Yield*
PhSH	Et₃ <mark>S</mark> iH	Ph S-<mark>Si</mark>Et ₃	<1	>99
p-Me(C ₆ H ₄)SH	Et₃ <mark>S</mark> iH	p-Me(C ₆ H ₄)S-SiEt ₃	<1	>99
p-Cl(C ₆ H₄)SH	Et₃ <mark>S</mark> iH	<i>p</i> -Cl(C ₆ H ₄)S-SiEt ₃	<1	>99
<i>p</i> -F(C ₆ H ₄)SH	Et₃ <mark>Si</mark> H	p-F(C ₆ H ₄)S-SiEt ₃	<1	>99
C ₆ F₅SH	Et₃ <mark>Si</mark> H	$C_6F_5S-SiEt_3$	168	>99

Conditions: 1.5 mol% catalyst, silane (1.1 eq.) and thiol (1 eq.) in C_6D_5Br or CD_2Cl_2 (1.0 mL) at 25°C. *Yields measured by ¹H-NMR spectroscopy.

Table S4 Dehydrocoupling between silanes and carbazoles, anilines, diamines or indoles.⁴

Amine	Silane	Product	Conditions	Time /h	Yield /%
Me Me	Ph₂MeSiH	Me N SiPh ₂ Me	25°C 1 mol% B(C₀F₅)₃	1	73
	Ph₂Me <mark>S</mark> iH	N SiPh ₂ Me	25℃ 1 mol% B(C ₆ F ₅) ₃	1	91
N H	Ph₂Me <mark>S</mark> iH	SiPh ₂ Me	25°C 1 mol% B(C ₆ F₅)₃	1	97
	Et₃ <mark>S</mark> iH	SiEt ₃	25°C 10 mol% B(C ₆ F ₅) ₃	1	95
Tol Tol ^{/NH}	(Me ₂ HSi) ₂ O	Tol Tol Tol ^{-N} Si ^O Si ^N Tol Me ₂ Me ₂	25°C 1 mol% B(C ₆ F ₅) ₃	1	97
NH ₂	Ph₂Me <mark>S</mark> iH	SiPh ₂ Me	70℃ 5 mol% B(C ₆ F ₅) ₃	72	90
Me NH ₂ Me	Ph₂Me <mark>S</mark> iH	Me H SiPh ₂ Me	70°C 1 mol% B(C₅F₅)₃	48	90
^{/Bu} NH ₂	Ph₂Me <mark>Si</mark> H	^{/Bu} N SiPh ₂ Me	70°C 1 mol% B(C₀F₅)₃	48	93
CI Me	Ph₂Me <mark>Si</mark> H	CI Me	60°C 1 mol% B(C ₆ F ₅) ₃	36	97
	Ph₂Me <mark>Si</mark> H	H SiPh ₂ Me Cl	60°C 1 mol% B(C ₆ F ₅) ₃	24	91
	Ph₂Me <mark>Si</mark> H	CI H SiPh ₂ Me CI	25°C 1 mol% B(C₅F₅)₃	36	88
F ₃ C NH ₂ CF ₃	Ph₂Me <mark>S</mark> iH	F ₃ C, H SiPh ₂ Me CF ₃	25℃ 1 mol% B(C ₆ F ₅) ₃	24	97

Table S4 continued...

Amine	Silane	Product	Conditions	Time /h	Yield /%
HN- Ph Ph	Ph₂Me <mark>Si</mark> H	PhMe ₂ Si Ph Ph SiMe ₂ Ph	25°C 2 mol% B(C ₆ F ₅) ₃	24	26
Ph.N.H.Ph	Ph₂Me <mark>Si</mark> H	SiMe ₂ Ph Ph、N SiMe ₂ Ph	70°C 5 mol% B(C ₆ F ₅) ₃	24	92
Ph _N H	Ph <mark>S</mark> iH₃	Ph_H Ph∼N ^{∕Si} ∖N∽Ph	60°C 1 mol% B(C ₆ F ₅) ₃	24	83
	Ph₂Me <mark>S</mark> iH	SiMe ₂ Ph	70°C 10 mol% B(C ₆ F₅)₃	144	50
	Ph₂Me <mark>S</mark> iH	Cl N SiMe ₂ Ph	70℃ 1 mol% B(C ₆ F ₅) ₃	24	81
Me H	Ph₂Me <mark>S</mark> iH	Me SiMe ₂ Ph	70℃ 1 mol% B(C ₆ F ₅) ₃	24	96
Ph H	Ph₂Me <mark>Si</mark> H	Ph SiMe ₂ Ph	70℃ 1 mol% B(C ₆ F ₅) ₃	24	97
Me H H	Ph₂Me <mark>Si</mark> H	Me N N SiMe ₂ Ph	70℃ 1 mol% B(C ₆ F ₅) ₃	24	92

Table S5 Si-N bond formation using the fluorophosphonium catalyst $[(C_6F_5)_3PF][B(C_6F_5)_4]$.³

E-H	Silane	Product	Time /h	Yield*
Ph ₂ NH	Et₃ <mark>Si</mark> H	Ph₂N- <mark>Si</mark> Et₃	10	>99
Ph ₂ NH	ClMe₂ <mark>Si</mark> H	Ph ₂ N-Si(Me) ₂ Cl	1	>99
Ph ₂ NH	Ph₃ <mark>S</mark> iH	Ph₂N -Si Ph₃	20	>99
Ph ₂ NH	PhMe₂ <mark>S</mark> iH	Ph ₂ N-Si(Me) ₂ Ph	48	>99
Ph ₂ NH	[′] Pr₃ <mark>Si</mark> H	-	96	0
(<i>p</i> -MeC ₆ H ₄) ₂ NH	Et₃ <mark>Si</mark> H	(p-MeC ₆ H ₄) ₂ N-SiEt ₃	30	>99
(<i>p</i> -MeC ₆ H ₄) ₂ NH	ClMe ₂ SiH	(p-MeC ₆ H ₄) ₂ N-Si(Me) ₂ Cl	16	>99
(<i>p</i> -MeC ₆ H ₄) ₂ NH	Ph₃ <mark>S</mark> iH	(<i>p</i> -MeC ₆ H ₄) ₂ N-SiPh ₃	36	40
ⁱ Pr ₂ NH	Et₃ <mark>Si</mark> H	-	48	0
PhNH ₂	Et₃ <mark>S</mark> iH	-	48	0

Conditions: 1.5 mol% catalyst, silane (1.1 eq.) and amine (1 eq.) in C_6D_5Br or CD_2Cl_2 (1.0 mL) at 25°C. *Yields measured by ¹H-NMR.

Table S6 Group 2 catalysed Si-N coupling.⁵

$$\begin{array}{c} H\\ N-H + H-SiR_3 & \underline{Cat.} \\ R' \end{array} \xrightarrow{H} N-SiR_3 + H_2 \\ R' \end{array} \xrightarrow{H} N-SiR_3 + H_2 \\ H_$$

Catalyst: TO^MMg-Me

amine (equiv)	silane	Product	% yield (isolated)
ⁿ PrNH ₂ (3.5)	Ph <mark>Si</mark> H₃	([″] PrHN)₃ <mark>Si</mark> Ph	99 (99)
ⁿ PrNH ₂ (3)	PhMe <mark>Si</mark> H ₂	(ⁿ PrHN)₂ <mark>Si</mark> MePh	99 (90)
ⁿ PrNH ₂ (0.5)	PhMe <mark>Si</mark> H ₂	ⁿ PrHN -Si HMePh	99 (78)
ⁿ PrNH ₂ (3)	Ph_2SiH_2	(ⁿ PrHN) ₂ SiPh ₂	99 (99)
ⁿ PrNH ₂ (0.5)	Ph_2SiH_2	ⁿ PrH N-Si HPh₂	99 (96)
ⁱ PrNH ₂ (2.5)	Ph <mark>Si</mark> H₃	([′] PrHN)₂ <mark>Si</mark> HPh	99 (99)
ⁱ PrNH ₂ (0.5)	Ph <mark>Si</mark> H₃	[′] PrH <mark>N-Si</mark> H₂Ph	99 (45)
ⁱ PrNH ₂ (2)	PhMe <mark>Si</mark> H ₂	ⁱ PrH N-Si HMePh	89 (67)
ⁱ PrNH ₂ (2)	Ph_2SiH_2	ⁱ PrHN- <mark>Si</mark> HPh ₂	99 (97)
^t BuNH ₂ (2.5)	Ph <mark>Si</mark> H₃	^t BuH N-Si H₂Ph	99 (90)
^t BuNH ₂ (2)	PhMe <mark>Si</mark> H ₂	^t BuH N-Si HMePh	90 (60)
^t BuNH ₂ (2)	Ph_2SiH_2	^t BuH N-Si HPh₂	99 (81)
PhNH ₂ (2.5)	Ph <mark>Si</mark> H₃	(PhHN)₂ <mark>Si</mark> HPh	99 (97)

2. References

- 1. J. M. Blackwell, K. L. Foster, V. H. Beck and W. E. Piers, J. Org. Chem., 1999, 64, 4887-4892.
- 2. C.B. Caputo, L. J. Hounjet, R. Dobrovetsky and D. W. Stephan, *Science*, 2013, **341**, 1374-1377.
- 3. M. Pérez, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, *PNAS*, 2014, **111**, 10917-10921.
- 4. L. Greb, S. Tamke and J. Paradies, *Chem. Commun.*, 2014, **50**, 2318-2320.
- 5. J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern and A. D. Sadow, *J. Am. Chem. Soc.*, 2011, **133**, 16782–16785