Supplementary Information

Determination and prediction of the magnetic anisotropy of Mn ions

Carole Duboc

University Grenoble-Alpes, CNRS, UMR 5250, Département de Chimie Moléculaire, 301 rue de la Chimie, 38041 Grenoble cedex 9.

Figure S1. Schematic representation of the different ligands

Figure S2. Origin of the shape of EPR spectra recorded under anisotropic resonance conditions.

Table S1. Additional data regarding the EPR parameters of Mn^{II} complexes.

Table S2. Additional data regarding the EPR parameters of Mn^{III} complexes.

Figure S1: Schematic representation of the different ligands

cyclam

acac

dbm

Only one direction for g_{min} and g_{max} Many orientations for g_{mid} (in red)

points that arise from the first derivate of the absorption spectra and that closely correspond with the position of the g-values. the three main directions and how EPR can give an access to these preferred directions, the two other slides explain the origin of the turning Figure S2. These three slides explain the shape of axial or rhombic signals caused by g-anisotropy. While the first slide highlights the origin of

Complex	coord. sphere	D_{exp}^{a} (10 ⁻⁴ cm ⁻¹)	E^{a} (10 ⁻⁴ cm ⁻¹)	E/D	Sixo	$A_{iso}^{~~{\rm a}}$ $(10^{-4}~{ m cm}^{-1})$	D_{calc} (10 ⁻⁴ cm ⁻¹)	ref ^b
Iodide complexes								
$[Mn(tppo)_2(I)_2]$	O_2I_2	0.906	0.223	0.246	2.0039		+1.264 ^c	1,2
[Mn(terpy)(I) ₂] six-coordinate	N_3I_2	+1.000	+0.190	0.190	1.98/1.99/1.99 ^d		+1.863 ^e	$^{3}(^{2})$
$trans-[Fe(Mn)(pyr)_4(I)_2]$	N_4I_2	0.932	0.020	0.021	2.00	77		4
$trans-[Mn(pic)_4(I)_2]$	N_4I_2	0.999	0.005	0.005	2.001			, v
$trans-[Mn(pz)_4(I)_2]$	N_4I_2	0.980	0.010	0.010	2.000			n O
cis-[Mn(phen) ₂ (I) ₂]	N_4I_2	0.590	0.145	0.246	2.008			7 0
cis-[Min(tpa)(1) ₂]	N_4I_2	-0.600	20.095	0.158	1.99/1.98/2.00*	ò	-0.868*	× ×
	IN412	0.030	0.120	0.189	2.00	00		
Bromide complexes four-coordinate								
$[Mn(tppo)_2(Br)_2]$	O_2Br_2	0.507	0.134	0.263	1.9985		+0.715 ^c	1(2)
[Zn(Mn)(tppo) ₂ (Br) ₂] five-coordinate	O_2Br_2	0.523	0.133	0.254	2.020/2.019/2.017 ^d	73		ę
[Mn(terpy)(Br) ₂] six-coordinate	N_3Br_2	+6050	+0.159	0.26	1.985		+0.983 ^e	³ (²)
<i>trans</i> -[Ru(Mn)(pyr) ₄ (Br) ₂]	N_4Br_2	0.665	0.001	0.002	2.00	77		4
$trans-[Fe(Mn)(pyr)_4(Br)_2]$	N_4Br_2	0.586	0.003	0.005	2.00	77		1 4
$trans-[Mn(pic)_4(Br)_2]$	N_4Br_2	0.626	0.003	0.005	2.002			; v
<i>trans</i> -[Mn(Si-O-pyr) ₂ (Br) ₂]	N_4Br_2	0.650	0.0007	0.01	2.00			- 10
cis-[Mn(phen) ₂ (Br) ₂]	N_4Br_2	0.359	0.074	0.21	2.002			i v
cis-[Mn(tpa)(Br) ₂]	N_4Br_2	-0.360	-0.073	0.203	$2.00/1.98/2.00^{d}$		-0.510^{e}	o ~
<i>cis</i> -[Zn(Mn)(tpa)(Br) ₂]	N_4Br_2	0.360	0.069	0.192	2.00	89		×
Chloride complexes								

Table S1: Experimental EPR parameters and calculated D values for mononuclear Mn(II) complexes.

4

$[Mn(L_{5}^{2})(OH_{2})](BPh_{4})_{2}$ [Mn(L_{5}^{3})(OH_{2})](BPh_{4})_{2} [Mn(bpy)_{2}(CF_{3}CO_{2})_{2}]	$sx-coorannaetrans-[Fe(Mn)(pyr)_4(NCS)_2]cis-[Mn(tpa)(NCS)_2][Zn(Mn)(en)_3](NO_3)_2[Cd(Mn)(bpa)_2](CIO_4)_2[Mn(tBu-terpy)_2](PF_6)_2[Mn(terpy)_2](I)_2[Zn(Mn)(terpy)_2](PF_6)_2[Zn(Mn)(terpy)_2](PF_6)_2[Mn(PzOx)_3(BC_6H_5)]CI$	N/O ligands complexes five-coordinate [Mn(terpy)(NCS) ₂] [Mn(tBu-terpy)(N ₃) ₂] [Zn(Mn)(tBu-terpy)(N ₃) ₂] K ₁₁ Na[As ₂ W ₂₀ Mn(OH ₂) ₃ O ₆₆]	$six-coordinate trans-[Ru(Mn)(pyr)_4(Cl)_2] trans-[Mn(pic)_4(Cl)_2] trans-[Mn(pic)_4(Cl)_2] cis-[Mn(phen)_2(Cl)_2] cis-[Mn(phen)_2(Cl)_2] cis-[Mn(tpa)(Cl)_2] cis-[Mn(L_4^2)(Cl)_2] [Mn(pb)_2Cl_2] [Mn(L_5^2)(Cl)](PF_6) [Mn(L_5^2)(Cl)](PF_6) [Mn(L_5^3)(Cl)(OH_2)](ClO_4) [Mn(L_4^3)(Cl)(OH_2)](ClO_4) \\$	four-coordinate [Mn(tppo) ₂ (Cl) ₂] [Zn(Mn)(tppo) ₂ (Cl) ₂] <i>five-coordinate</i> [Mn(terpy)(Cl) ₂] [Mn(phenyl-terpy)(Cl) ₂] [Mn(tmc)(Cl)1 ⁺
N₅O N₅O N4O2	2	O Z Z 5	$\begin{array}{c} N_4Cl_2 \\ N_4Cl_2 \\$	02Cl2 02Cl2 N3Cl2 N4Cl2
-0.137 -0.090 -0.035	0.010 -0.085 +0.020 -0.018 -0.073 -0.042 0.058 -0.323	-0.300 -0.250 0.260 +1.460	0.220 0.186 0.188 0.124 +0.115 -0.147 -0.147 -0.146 0.180 +0.157 +0.157	0.165 0.172 -0.260 -0.319 0.250
0 0 -0.005	0.003 -0.015 0 -0.015 -0.005 -0.006 -0.014	-0.050 -0.044 0.043 +0.033	$\begin{array}{c} 0\\ 0\\ 0\\ 0.011\\ 0.005\\ +0.020\\ 0.023\\ -0.021\\ -0.017\\ 0.060\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	0.045 0.047 -0.075 -0.071
0 0 0.154	$\begin{array}{c} 0.300\\ 0.176\\ 0\\ 0.205\\ 0.190\\ 0.104\\ 0.043\\ \end{array}$	0.17 0.176 0.165 0.23	0 0 0.06 0.04 0.174 0.174 0.116 0.14 0.14 0.14	0.273 0.273 0.29 0.22 0.25
98 2.00 2.00 2.00	2.00 2.004/2.021 ^f 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	1.99/1.97/1.97 ^d 2.000 2.0010/2.0005 ^f 2.01/2.00/2.02 ^d	2.00 2.004 2.004 2.00 2.00 2.00 2.00 2.0	2.0000 2.03/2.02/2.02 ^d 1.994/2.010/2.025 ^d 1.982/1.970/1.970 ^d
	80 -77 -77 71 80	72.5	77	77
-0.089° -0.080° -0.087	-0.075° +0.111° +0.068°	-0.504° -0.347°	+0.155° -0.120° -0.180 +0.254° +0.223° +0.150°	+0.288° -0.459° -0.486°
13 14	4 15 15 15 20	$^{3}_{16} \binom{15}{15}_{16}_{17}$	13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$^{1}\binom{2}{9}$ $^{11}\binom{2}{12}$

$[Mn(pb)(NO_3)(OH_2)](NO_3) [Mn(pb)(CF_3CO_2)_2] [Mn(terpy)(CF_3CO_2)_2(OH_2)] [Pb(Mn)(apy)_6](CIO_4)_2 \\[Pb(Mn)(apy)_6](CIO_4)_2 \\[Pb(Mn)(apy)_6](CIO_4)[Pb(Mn)(apy)_6](CIO_4)_2 \\[Pb(Mn)(apy)_6](CIO_4)[Pb$	N402 N402 O ₆	-0.074 -0.071 -0.0009	-0.009 -0.005 0.021	0.122 0.070 0.308	2.00 2.00 2.008	-87	-0.050 -0.029 -0.041
$[Mg(Mn)(apy)_6](ClO_4)_2$ $[Mn(mal)(OH_2)_2]$	Ó Ő	-0.004 +0.023	+0 007	0 324	2.008	-87 -87	
$[Mn(ompa)_{3}](ClO_{4})_{2}$	O_6	-0.015			$2.011/2.010^{f}$	-99.5	
$[Hg(Mn)(pyrO)_6](ClO_4)_2$	06	0.042			2.009	-88-	
[Hg(Mn)(2Me-pyrO) ₆](ClO ₄) ₂	O_6	0.023			2.010	-87	
$[Hg(Mn)(3Me-pyrO)_6](ClO_4)_2$	O_6	0.050			2.010	-87	
$[Hg(Mn)(4Me-pyrO)_6](ClO_4)_2$	O_6	0.067	0.015	0.229	2.003	-89	
$[Hg(Mn)(4CN-pyrO)_6](ClO_4)_2$	O_6	0.022			2.011	-84	
[Hg(Mn)(4NO ₂ -pyrO) ₆](ClO ₄) ₂	O_6	0.047	0.002	0.041	2.012	-84	
seven-coordinate							
$[Mn(L_6^2)(OH_2)](CIO_4)_2$	$N_{6}O$	-0.127	0	0	2.00		-0.03
$[Mn(LX)(OH_2)](ClO_4)_2$	N502	0.137	0.013	0.093	1.997		
[Mn(tpada)ClCa(OH ₂) _{2.67} (MeOH	N402C1	-0.098	-0.013	0.133	2.00		+0.10
$[Mn(terpy)(NO_3)(OH_2)]$	N ₃ 04	-0.068	-0.010	0.147	2.00		-0.09
$[Mn(bpea)(NO_3)_2]$	N304	+0.086	+0.008	0.093	2.00		+0.0

 g_{perp} ^{*a}The sign is reported when it has been determined;* ^{*b} In parenthesis, the reference reporting* D_{calc} *is notified if it is different from the one reporting* D_{exp} ; ^{*c*} *Calculations based on the optimized structure ;* ^{*d*} $g_x/g_y/g_z$; ^{*c*} *Calculations based on the experimental structures;* ^{*f*} g_{para} *and*</sup></sup>

[Mn(Phterpy)Cl ₃]	[Mn(terpy)Cl ₃]	[Mn(terpy)F ₃]	[Mn(bpea)F ₃]	$[Mn(dbm)_3]$ $[Mn(OH_2)_6]^{2+}$	[Mn(acac) ₃]	$[\mathrm{Mn}(\mathrm{dbm})_2(\mathrm{py})_2](\mathrm{ClO}_4)$	[MnLK(PF ₆)]	[Mn(bpia)(OAc)(OCH ₃)](PF ₆)	[Mn(opbaCl ₂)(py) ₂]	$[Mn(terpy)(N_3)_3]$	S=2 6-coordinate [Mn(bpea)(N ₃) ₃]	Complex
N3C13	N3C13	N3F3	N3F3	90 90	06	N2O4	N3O3	N4O2	N402	N6	N6	coord. sphere
Elong.	Elong.	Elong.	Elong.	Elong. Elong.	Elong.	Elong.	Comp.	Comp.	Elong.	Elong.	Comp.	Geom.
-3.46	-3.53	-3.82(2)	-3.67(2)	-4.35 -4.491(7)	-4.52(2)	-4.504(2)	+4.15	+3.526(3)	-3.246(2)	-3.29(1)	+3.50(1)	D_{exp}^{a} (cm ⁻¹)
0.43	0.30	0.75(2)	0.70(2)	0.26 0.248(5)	0.25(2)	-0.425(1)	0.75	+0.588(6)	-0.115(1)	-0.48(1)	82(1)	E^{a} (cm ⁻¹)
0.124	0.085	-0.196	-0.191	-0.60 0.055	0.055	0.094	0.181	0.167	0.035	-0.146	+0.234	E/D
					$B_{4}^{4} = 48(4) \times 10^{-4}$	$B_{0}^{4} = 1.8(4) \times 10^{-4}_{4} B_{2}^{4} = 7(3) \times 10^{-1}_{4}$	B',₄= -0.0082(S)	$B_{0}^{4} = -0.00084(7) B_{2}^{4} = -0.002(2)$	$B^{4}_{0} = B^{4}_{2} = 0$			B_{0}^{4}
1.96/2.00/2.00	1.98/2.00/2.00	1.97(2)/2.04(1)/1.96(1)	196(1)/1.98(1)/1.98(1)	1.99/1.99/1.97 1.981(5)/1.993(5)/1.988(5)	1.99(1)	1.993(1)/1.994(1)/1.983(1)	2.00	1.98(1)/1.952(6)/1.978(5)	2.001(1)/2.000(1)/1.990(3)	2.00(0.5)/1.98(0.5)/2.01(0.5)	2.02(1)/1.98(1)/1.95(1)	${\cal G}_{\rm iso}$
DFT	DFT	DFT	DFT	DFT	DFT	DFT CAS		DFT CAS	DFT	DFT	DFT	Metho.
-3.00 -2.30	-2.25	-2.17 -2.17	-2.43	-3.16	-3.12	-3.34 -3.85		-3.47 +2.77 +3.24	-2.53	-2.79	+2.56	D_{calc} (cm ⁻¹)
28,38	28,38	27,28	27,28	36 28,37	34,35	28,33	32	31	30	29	27,28	ref ^b

Table S2: Experimental EPR parameters and calculated D values for mononuclear Mn(III) complexes.

7

+10.78 +15.89 +9.94	DFT LFT DFT	2.079(7)/2.074(6)/2.075(15)		0.003	+0.04(1)	+15.89(2)		N6	$[Tp*_2Mn](SbF_6)$
+17.	LFT	2.065(6)/2.073(8)/1.978(6)		0.023	+0.42(2)	+17.97(1)		N6	$S = I$ $[Tp_{2}Mn](SbF_{6})$
		2.00(1)		0.006	0.015	-2.60(2)	Elong.	N4	<i>4-coordinate</i> [Mn(TBHP ₈ Cz)]
-1.98	CAS	1.984		0	0	-2.33(1)	Elong.	N4C1	[Mn(ODMAPz)Cl]
-1.2	DFT	1.98/1.98/2.005(3)		0	0.00(1)	-2.290(5)	Elong.	N4C1	[Mn(tpp)Cl]
-1.8	DFT	2.000(2)/2.000(3)/2.006(4) 1.994(4)/1.994(4)/1.980(4)		0.197 0.011	-0.608(3) -0.030(3)	-3.084(3) -2.69(2)	Elong. Elong.	N5C N4O	<i>5-coordinate</i> [Mn(NCTPP)(py) ₂] [Mn(tpfc)(OPPh ₃)
		2.00/2.00/1.99	01~(C)/1 -+ d	0.056	+0.034	+0.604	Elong.	N4I2	[Mn(cyclam)I ₂]I
-3.0	CAS	2.005(4)/2.036(2)/2.015(2)	$B^{4}_{0} = 9(3) \times 10^{-4} B^{4}_{2} = 6(2) \times 10^{-4}$	0.116	-	-	Elong.	N4Br2	[Mn(cyclam)Br ₂]Br

^{*a*} the sign is reported when it has been determined; ^{*b*} in parenthesis, the reference reporting D_{calc} is notified if it is different from the one reporting D_{exp} ; ^{*c*} calculations based on the experimental structures; ^{*I*} g_{μ}/g_{t}

- (1) Wood, R. M.; Stucker, D. M.; Jones, L. M.; Lynch, W. B.; Misra, S. K.; Freed, J. H. Inorg. Chem. 1999, 38, 5384-5388.
- (2) Zein, S.; Duboc, C.; Lubitz, W.; Neese, F. Inorg. Chem. 2008, 47, 134-142.
- (3) Mantel, C.; Baffert, C.; Romero, I.; Deronzier, A.; Pécaut, J.; Collomb, M. N.; Duboc, C. *Inorg. Chem.* 2004, 43, 6455-6463.
- (4) Jacobsen, C. J. H.; Pedersen, E.; Villadsen, J.; Weihe, H. Inorg. Chem. 1993, 32, 1216-1221.
- (5) Lynch, W. B.; Boorse, R. S.; Freed, J. H. J. Am. Chem. Soc. 1993, 115, 10909-10915.
- (6) Reedijk, J.; Klaaijsen, F. W.; Witteveen, H. T. J. Chem. Soc., Perkin Trans 2 1973, 69, 1537-1541.
- (7) Duboc, C.; Phoeung, T.; Zein, S.; Pécaut, J.; Collomb, M. N.; Neese, F. Inorg. Chem. 2007, 46, 4905-4916.
- (8) Duboc, C.; Phoeung, T.; Jouvenot, D.; Blackman, A. G.; McClintock, L. F.; Pécaut, J.; Deronzier, A.;
- Collomb, M. N. Polyhedron 2007, 26, 5243-5249.
- (9) Kosky, C. A.; Gayda, J. P.; Gibson, J. F.; Jones, S. F.; Williams, D. J. Inorg. Chem. 1982, 21, 3173-3179.
- (10) Goodgame, D. M. L.; El Mkami, H.; Smith, G. M.; Zhao, J. P.; McInnes, E. J. L. Dalton Trans. 2003, 34-35.
- (11) Duboc, C.; Astier-Perret, V.; Chen, H. Y.; Pécaut, J.; Crabtree, R. H.; Brudvig, G. W.; Collomb, M. N. *Inorg. Chim. Acta* **2006**, *359*, 1541-1548.
- (12) Bucher, C.; Duval, E.; Barbe, J. M.; Verpeaux, J. N.; Amatore, C.; Guilard, R.; Le Pape, L.; Latour, J. M.; Dahaoui, S.; Lecomte, C. *Inorg. Chem.* **2001**, *40*, 5722-5726.
- (13) Hureau, C.; Groni, S.; Guillot, R.; Blondin, G.; Duboc, C.; Anxolabéhère-Mallart, E. *Inorg. Chem.* 2008, 47, 9238-9247.
- (14) Rich, J.; Castillo, C. E.; Romero, I.; Rodriguez, M.; Duboc, C.; Collomb, M.-N. *Eur. J. Inorg. Chem.* **2010**, 3658-3665.
- (15) Duboc, C.; Collomb, M. N.; Pécaut, J.; Deronzier, A.; Neese, F. Chem. Eur. J. 2008, 14, 6498-6509.
- (16) Mantel, C.; Philouze, C.; Collomb, M. N.; Duboc, C. Eur. J. Inorg. Chem. 2004, 3880-3886.
- (17) Pichon, C.; Mialane, P.; Rivière, E.; Blain, G.; Dolbecq, A.; Marrot, J.; Sécheresse, F.; Duboc, C. *Inorg. Chem.* **2007**, *46*, 7710-7712.
- (18) Palmer, R. A.; Yang, M. C.-L.; Hempel, J. C. Inorg. Chem. 1978, 17, 1200-1203.
- (19) Glerup, J.; Goodson, P. A.; Hodgson, D. J.; Michelsen, K.; Nielsen, K. M.; Weihe, H. Inorg. Chem. 1992, 31, 4611-4616.
- (20) Azarkh, M.; Penkova, L. V.; Kats, S. V.; Varzatskii, O. A.; Vooshin, Y. Z.; Groenen, E. J. J. Journal of *Physical Chemistry Letters* **2014**, *5*, 886-889.
- (21) Woltermann, G. M.; Wasson, J. R. J. Phys. Chem. 1973, 77, 945-949.
- (22) Raju, C. L.; Gopal, N. O.; Narasimhulu, K. V.; Rao, J. L.; Reddy, B. C. V. Spectrochim. Acta A 2005, 61, 2181-2187.
- (23) Woltermann, G. M.; Wasson, J. R. Chem. Phys. Lett. 1972, 16, 92-97.
- (24) Woltermann, G. M.; Wasson, J. R. J. Phys. Chem. 1974, 78, 45-49.
- (25) Wegermann, C. A.; Strapasson, P.; Romanowski, S. M. M.; Bortoluzzi, A.; Ribeiro, R. R.; Nunes, F. S.; Drechsel, S. M. *Applied Catalysis a-General* **2013**, *454*, 11-20.
- (26) Gerey, B.; Gennari, M.; Goure, E.; Pecaut, J.; Blackman, A.; Pantazis, D. A.; Neese, F.; Molton, F.;
- Fortage, J.; Duboc, C.; Collomb, M.-N. Dalton Trans. 2015, 44, 12757-12770.
- (27) Mantel, C.; Hassan, A. K.; Pécaut, J.; Deronzier, A.; Collomb, M. N.; Duboc-Toia, C. J. Am. Chem. Soc. **2003**, *125*, 12337-12344.
- (28) Duboc, C.; Ganyushin, D.; Sivalingam, K.; Collomb, M.-N.; Neese, F. J. Phys. Chem. A 2010, 114, 10750-10758.
- (29) Limburg, J.; Vrettos, J. S.; Crabtree, R. H.; Brudvig, G. W.; Paula, J. C. d.; Hassan, A.; A.-L.Barra; Duboc-Toia, C.; Collomb, M.-N. *Inorg. Chem.* **2001**, *40*, 1698-1703.
- (30) Vallejo, J.; Pascual-Alvarez, A.; Cano, J.; Castro, I.; Julve, M.; Lloret, F.; Krzystek, J.; De Munno, G.;
- Armentano, D.; Wernsdorfer, W.; Ruiz-Garcia, R.; Pardo, E. Angew. Chem. Int. Ed. 2013, 52, 14075-14079.
- (31) Scheifele, Q.; Riplinger, C.; Neese, F.; Weihe, H.; Barra, A. L.; Juranyi, F.; Podlesnyak, A.; Tregenna-Piggott, P. L. W. *Inorg. Chem.* **2008**, *47*, 439-447.
- (32) Wang, S.; He, W. R.; Ferbinteanu, M.; Li, Y. H.; Huang, W. Polyhedron 2013, 52, 1199-1205.
- (33) Aromi, G.; Telser, J.; Ozarowski, A.; Brunel, L. C.; Stoeckli-Evans, H. M.; Krzystek, J. *Inorg. Chem.* 2005, 44, 187-196.
- (34) Krzystek, J.; Yeagle, G. J.; Park, J. H.; Britt, R. D.; Meisel, M. W.; Brunel, L. C.; Telser, J. *Inorg. Chem.* **2003**, *42*, 4610-4618.
- (35) Neese, F. J. Am. Chem. Soc. 2006, 128, 10213-10222.
- (36) Barra, A. L.; Gatteschi, D.; Sessoli, R.; Abbati, G. L.; Cornia, A.; Fabretti, A. C.; Uytterhoeven, M. G. Angew. Chem. Int. Ed. 1997, 36, 2329-2331.

(37) Tregenna-Piggott, P. L. W.; Weihe, H.; Barra, A. L. Inorg. Chem. 2003, 42, 8504-8508.

(38) Mantel, C.; Chen, H. Y.; Crabtree, R. H.; Brudvig, G. W.; Pécaut, J.; Collomb, M. N.; Duboc, C.

ChemPhysChem 2005, 6, 541-546.

(39) Mossin, S.; Stefan, M.; ter Heerdt, P.; Bouwen, A.; Goovaerts, E.; Weihe, H. Appl. Magn. Reson. 2001, 21, 587-596.

(40) Mossin, S.; Weihe, H.; Barra, A. L. J. Am. Chem. Soc. 2002, 124, 8764-8765.

(41) Harvey, J. D.; Ziegler, C. J.; Telser, J.; Ozarowski, A.; Krzystek, J. Inorg. Chem. 2005, 44, 4451-4453.

(42) Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. Chem. Commun. 2000, 1957-1958.

(43) Krzystek, J.; Pardi, L. A.; Brunel, L. C.; Goldberg, D. P.; Hoffman, B. M.; Licoccia, S.; Telser, J. Spectrochim. Acta A **2002**, *58*, 1113-1127.

(44) Goldberg, D. P.; Telser, J.; Krzystek, J.; Montalban, A. G.; Brunel, L. C.; Barrett, A. G. M.; Hoffman, B. M. J. Am. Chem. Soc. **1997**, *119*, 8722-8723.

(45) Lansky, D. E.; Mandimutsira, B.; Ramdhanie, B.; Clausen, M.; Penner-Hahn, J.; Zvyagin, S. A.; Telser, J.;

Krzystek, J.; Zhan, R. Q.; Ou, Z. P.; Kadish, K. M.; Zakharov, L.; Rheingold, A. L.; Goldberg, D. P. *Inorg. Chem.* **2005**, *44*, 4485-4498.

(46) Forshaw, A. P.; Smith, J. M.; Ozarowski, A.; Krzystek, J.; Smirnov, D.; Zvyagin, S. A.; Harris, T. D.; Karunadasa, H. I.; Zadrozny, J. M.; Schnegg, A.; Holldack, K.; Jackson, T. A.; Alamiri, A.; Barnes, D. M.; Telser, J. *Inorg. Chem.* **2013**, *52*, 144-159.