Supporting Information

Theoretical study on the catalytic role of water in methanol steam reforming on PdZn(111)

Zheng-Qing Huang,^a Bo Long^b and Chun-Ran Chang^{*a}

^a School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China

^b College of Information Engineering, Guizhou Minzu University, Guiyang 550025, China

 Table S1 Comparison of the adsorption energies of key species with and without coadsorbed water

Species	E _{ads} ^a / eV	$E_{\text{co-ads}}^{b}$ / eV	$\Delta E_{ m ads}^{c}$ / eV	<i>d</i> (O…H) ^{<i>d</i>} ∕Å
H ₂ O	-0.33	-0.95	-0.29	1.70
CH ₃ OH	-0.39	-0.99	-0.27	1.71
CH ₃ O	-2.32	-2.73	-0.08	1.49
H ₂ COOH	-2.09	-2.70	-0.28	1.75
НСООН	-0.39	-0.89	-0.17	1.81
bi-HCOO	-2.73	-3.33	-0.27	1.80
mono-HCOO	-2.24	-2.84	-0.27	1.59

^{*a*} The adsorption energy of separated key species. ^{*b*} The co-adsorption energy of key species and a water molecule. ${}^{c}\Delta E_{ads} = E_{co-ads} - (E_{ads} + E_{ads(H_2O)})$, where $E_{ads(H_2O)}$ refers to the adsorption energy (-0.33 eV) of a separated H₂O. ^{*d*} The length of hydrogen bond between water and key species.

Elementary reaction	$E_{\rm a}$ / eV	$\Delta E / eV$
$CH_3OH^* \rightarrow CH_3O^* + H^*$	1.27	0.15
$\mathrm{CH_3OH}^* + \mathrm{H_2O}^* \rightarrow \mathrm{CH_3O}^* + \mathrm{H}^* + \mathrm{H_2O}^*$	0.86	0.29
$\mathrm{CH_3OH}^* + \mathrm{2H_2O}^* \rightarrow \mathrm{CH_3O}^* + \mathrm{H}^* + \mathrm{2H_2O}^*$	0.91	0.37
$\mathrm{CH_3OH}^* + \mathrm{3H_2O}^* \rightarrow \mathrm{CH_3O}^* + \mathrm{H}^* + \mathrm{3H_2O}^*$	0.89	0.42
$\rm CH_3O^* \rightarrow \rm HCHO^* + \rm H^*$	1.41	1.18
$\mathrm{CH_{3}O^{*}+H_{2}O^{*}} \rightarrow \mathrm{HCHO^{*}+H^{*}+H_{2}O^{*}}$	1.16	0.60
$\mathrm{CH_3O^*} + \mathrm{2H_2O^*} \rightarrow \mathrm{HCHO^*} + \mathrm{H^*} + \mathrm{2H_2O^*}$	1.01	0.49
$\mathrm{CH}_{3}\mathrm{O}^{*} + 3\mathrm{H}_{2}\mathrm{O}^{*} \rightarrow \mathrm{H}\mathrm{CHO}^{*} + \mathrm{H}^{*} + 3\mathrm{H}_{2}\mathrm{O}^{*}$	1.16	0.61

Table S2 Activation barriers (E_a) and reaction energies (ΔE) of the dehydrogenation of methanol and methoxyl at different water coverages

Table S3 Activation barriers (E_a) and reaction energies (ΔE) of formaldehyde dehydrogenation with and without the assistance of water

Elementary reaction	$E_{\rm a}$ / eV	$\Delta E / eV$
$\rm HCHO^* \rightarrow \rm HCO^* + \rm H^*$	0.91	0.24
$\mathrm{HCHO}^* + \mathrm{H_2O}^* \longrightarrow \mathrm{HCO}^* + \mathrm{H}^* + \mathrm{H_2O}^*$	0.88	0.28
$\mathrm{HCHO}^* + 2\mathrm{H_2O}^* \rightarrow \mathrm{HCO}^* + \mathrm{H}^* + 2\mathrm{H_2O}^*$	0.87	0.12