Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Enantioselectivity and CatalysisImprovements of

PseudomenasCepacia Lipase with Tyr and Asp Modification

Jing Li,^{*a*, *b*}Lei Yue,^{*b*} Chang Li,^{*b*} Yuanjiang Pan^{**b*} and Lirong Yang^{**a*}

^aInstitute of Biological Engineering, Department of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
^bDepartment of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, China.

SUPPORTING INFORMATION

Table of Contents

 Enantioselectivity and binding free energy for the hydrolysis of the other four substrates (<i>sec</i>-butyl butyrate, <i>sec</i>-butyl hexanoate, <i>hexan</i>-2-yl acetate and <i>octan</i>-2- yl acetate)
2. Modification degree and potential modification sites4
3. Theoretical peptide masses and MALDI-TOF-MS characterization5
 4. Correlation of Δ(ΔG) and enantioselectivity for the hydrolysis the other four substrates(<i>sec</i>-butyl butyrate, <i>sec</i>-butyl hexanoate, <i>hexan</i>-2-yl acetate and <i>octan</i>-2-yl acetate)
 Activity standard deviation (three parallel experiments) of the <i>p</i>-NPP hydrolysis by modification reagent, native and modified <i>PcL</i> in aqueous solution10
6. The enantioselectivity standard deviation (three parallel experiments) of the hydrolysis of <i>sec</i> -butyl acetate, <i>sec</i> -butyl butyrate, <i>sec</i> -butyl hexanoate, <i>hexan</i> -2-yl acetate and <i>octan</i> -2-yl acetate catalyzed by the native and modified <i>PcL</i> 11
7. The ee _s of the hydrolysis of <i>sec</i> -butyl acetate, <i>sec</i> -butyl butyrate, <i>sec</i> -butyl hexanoate, <i>hexan</i> -2-yl acetate and <i>octan</i> -2-yl acetate catalyzed by the native and modified <i>PcL</i>
8. The method of ee _s and enantioselectivity calculation13

Substrate	Modification reagent	Initial rate(µmol min ⁻¹) <i>V_R</i>	<i>E</i> value	Enantiopreference
	Native PcL	12.0	1.1	R
	NAI alone	10.6	1.2	R
Sec-butyl butyrate	NAI + <i>n</i> -hexane	8.6	3.4	R
	I ₃ -alone	11.3	1.7	R
	I ₃ -+ <i>n</i> -hexane	10.2	2.0	R
	EDA alone	14.0	2.2	R
	EDC alone	6.8	3.0	R
	Native PcL	13.1	1.2	R
	NAI alone	9.7	1.2	R
	NAI + <i>n</i> -hexane	11.0	3.1	R
Sec-butyl hexanoate	I ₃ -alone	12.1	1.8	R
	I ₃ -+ <i>n</i> -hexane	9.3	2.3	R
	EDA alone	14.7	2.3	R
	EDC alone	8.2	3.2	R
	Native PcL	11.2	1.6	R
	NAI alone	10.8	1.8	R
	NAI + <i>n</i> -hexane	8.7	3.9	R
Hexan-2-yl acetate	I ₃ -alone	10.6	2.6	R
	I ₃ -+ <i>n</i> -hexane	10.3	3.1	R
	EDA alone	12.8	3.0	R
	EDC alone	6.3	3.7	R
	Native PcL	12.3	1.9	R
	NAI alone	9.8	2.0	R
	NAI + <i>n</i> -hexane	9.1	4.5	R
Octan-2-yl acetate	I ₃ -alone	11.0	3.0	R
	I ₃ ⁻⁺ <i>n</i> -hexane	11.6	3.5	R
	EDA alone	13.6	3.3	R
	EDC alone	7.8	4.0	R

Table S1 The initial rate and the enantioselectivity for the hydrolysis of sec-butyl butyrate, sec-butyl hexanoate, hexan-2-yl acetate and octan-2-yl acetate catalyzed by the native and modified PcL.

Table S2 The binding free energy of PcL and sec-butyl butyrate, sec-butyl hexanoate, hexan-2-yl acetate and octan-2-yl acetate.

Substrate	Modification reagent	Binding free	energy (kJ/mol)	$ \Delta(\Delta \mathbf{G}) $
	-	R (ΔG)	S (Δ G)	- (kJ/mol)
	Native PcL	-21.50	-20.34	0.2
	NAI alone	-19.87	-19.68	0.2
Sec-butyl butyrate	NAI + <i>n</i> -hexane	-28.88	-13.61	15.3
	I ₃ -alone	-17.18	-12.79	4.4
	I ₃ -+ <i>n</i> -hexane	-26.07	-17.36	9.6
	EDA alone	-10.58	-0.26	10.3
	EDC alone	-22.68	-9.15	13.5
	Native PcL	-18.65	-16.49	2.2
	NAI alone	-22.86	-20.20	2.7
	NAI + <i>n</i> -hexane	-26.79	-9.69	17.1
Sec-butyl hexanoate	I ₃ -alone	-30.19	-18.65	11.5
	I ₃ -+ <i>n</i> -hexane	-30.81	-17.16	13.7
	EDA alone	-22.68	-8.70	14.0
	EDC alone	-21.47	-5.67	15.8
	Native PcL	-18.91	-16.67	2.2
	NAI alone	-15.60	-12.94	2.7
	NAI + <i>n</i> -hexane	-28.65	-4.50	24.1
hexan-2-yl acetate	I ₃ -alone	-28.65	-17.13	11.5
	I ₃ -+ <i>n</i> -hexane	-18.66	-3.98	14.7
	EDA alone	-20.71	-5.61	15.1
	EDC alone	-17.82	-0.50	17.3
	Native PcL	-11.93	-11.61	0.3
	NAI alone	-7.49	-7.20	0.3
	NAI + <i>n</i> -hexane	-18.93	-10.02	8.9
octan-2-yl acetate	I ₃ -alone	-13.30	-11.02	2.3
	I ₃ ⁻⁺ <i>n</i> -hexane	-13.55	-8.74	4.8
	EDA alone	-26.81	-22.75	4.1
	EDC alone	-17.31	-9.40	7.9

 Table S3 Modification degree of PcL

Entry	Modification reagent	Modification site	Modification degree
1	NAI + <i>n</i> -hexane	Tyr ⁴	61.6
		Tyr ²⁹	19.2
		Tyr ⁴⁵	4.1
		Tyr ⁹⁵	1.1
2	NAI alone	Tyr ⁴	56.4
		Tyr ⁴⁵	3.7
		Tyr ⁹⁵	1.2
3	$I_3 + n$ -hexane	Tyr ²⁹	12.3
		Tyr ⁴⁵	37.2
		Tyr ⁹⁵	2.1
4	I ₃ ⁻ alone	Tyr ⁴⁵	53.3
		Tyr ⁹⁵	4.0
5	EDA alone	Asp ³⁶	8.2
6	EDC alone	Asp ⁵⁵	5.7

Group	Residue
Carboxyl	Asp ³⁶ , Asp ⁵⁵ , Asp ³⁰³ , Glu ⁶³ , Glu ³⁰²
Hydroxy1	Tyr ⁴ , Tyr ²³ , Tyr ²⁹ , Tyr ³¹ , Tyr ⁴⁵ , Tyr ⁹⁵

Fig.S1 Potential modification sites of *PcL* scanned by accessible surface analysis (ASA).

Table S4 Theoretical peptide masses of PcL

Mass (m/z)	Position	Peptide sequence
2231.0767	23-40	YVGVLEYWYGIQEDLQQR
2138.1604	95-115	YVAAVAPDLVASVTTIGTPHR
2124.9944	41-61	GATVYVANLSGFQSDDGPNGR
1706.8972	284-297	WNHLDEINQLLGVR
1526.8577	9-22	YPIILVHGLTGTDK
1519.7461	270-283	CSALYGQVLSTSYK
1424.7604	81-94	VNLVGHSQGGLTSR
1211.6378	298-309	GANAEDPVAVIR
1047.5065	259-269	GSGQNDGVVSK
1020.5724	62-70	GEGQNDGVVSK
881.4111	1-8	ADNYAATR

Fig.S2 MALDI-TOF fingerprint mass spectra obtained by tryptic digestion of native and NAI modified *PcL* in the presence of *n*-hexane.

Fig.S3 MALDI-TOF mass spectra by tryptic digestion of I_3 ⁻ modified *Pc*Lin the absence of *n*-hexane. (A) mass fingerprint spectrum (B) expanded mass spectrum, Tyr⁴⁵ modification, *m/z* change from 2124.997 to 2250.897 (C) expanded mass spectrum, Tyr⁹⁵ modification, *m/z* change from 2138.161 to 2264.051.

Fig.S4 MALDI-TOF mass spectra by tryptic digestion of I_3 ⁻ modified *Pc*Lin the presence of *n*-hexane. (A) mass fingerprint spectrum (B) expanded mass spectrum, Tyr⁴⁵ modification, *m/z* change from 2124.997 to 2250.907 (C) expanded mass spectrum, Tyr²⁹ modification, *m/z* change from 2231.074 to 2356.964 (D) expanded mass spectrum, Tyr⁹⁵ modification, *m/z* change from 2138.164 to 2264.064.

Fig.S5 MALDI-TOF mass spectra by tryptic digestion of EDA modified *Pc*Lin the absence of *n*-hexane. (A) mass fingerprint spectrum (B) expanded mass spectrum, Asp^{36} modification, *m/z* change from 2231.079 to 2273.009.

Fig.S6 MALDI-TOF mass spectra by tryptic digestion of EDC modified *Pc*Lin the absence of *n*-hexane. (A) mass fingerprint spectrum (B) expanded mass spectrum, Asp^{55} modification, *m/z* change from 2124.997 to 2267.097.

Fig.S7 MALDI-TOF mass spectra by tryptic digestion of NAI modified *PcL* in the absence of *n*-hexane. (A) mass fingerprint spectrum (B) expanded mass spectrum, Tyr⁴ modification, *m/z* change from to 881.419 to 923.429 (C) expanded mass spectrum, Tyr⁴⁵ modification, *m/z* change from 2124.997 to 2167.027 (D) expanded mass spectrum, Tyr⁹⁵ modification, *m/z* change from 2138.161 to 2180.181.

Fig.S8 Correlation of $|\Delta(\Delta G)|$ and enantioselectivity corresponding to native and modified *PcL* at Tyr.

Table S5 Activity standard deviation (three parallel experiments) of the *p*-NPP hydrolysis by modification reagents, native and modified *PcL* in aqueous solution.

Lipase assay substrate	Modification reagent	Concentration (mM/L)	Standard deviation
	NAI + <i>n</i> -hexane	0 (0 mg/L)	0
		0.02 (2 mg/L)	0.02
		0.07 (8 mg/L)	0.01
		0.15 (16 mg/L)	0.01
		0.29 (32 mg/L)	0.02
		0 (0 mg/L)	0
		0.02 (2 mg/L)	0.01
	NAI alone	0.07 (8 mg/L)	0.02
		0.15 (16 mg/L)	0.02
		0.29 (32 mg/L)	0.008
		0 (0 mg/L)	0.01
		0.02 (2 mg/L)	0.01
	NAI without PcL	0.07 (8 mg/L)	0.01
		0.15 (16 mg/L)	0.008
		0.29 (32 mg/L)	0.008
<i>p</i> -nitrophenyl palmitate(<i>p</i> -NPP)		0	0
	I ₃ ·+ <i>n</i> -hexane	20	0.01
		40	0.02
		80	0.01
	I3 alone	0	0
		20	0.02
		40	0.02
		80	0.01
	I ₃ - without <i>Pc</i> L	0	0.01
		20	0.01
		40	0.008
		80	0.008
		0	0
		62.5	0.01
	EDC alone	250	0.01
		500	0.01
		1000	0.02
	EDC without <i>Pc</i> L	0	0.01
		62.5	0.01
		250	0.008
		500	0.01
		1000	0.02

		0	0
		31.25	0.02
		125	0.01
	EDA alone	500	0.02
		1000	0.01
		1500	0.01
	EDA without <i>Pc</i> L	0	0.008
		31.25	0.008
		125	0.01
		500	0.008
		1000	0.01
_		1500	0.008

Substrate	Modification reagent	Enantioselectivity standard deviation
	Native PcL	0.01
	NAI alone	0.02
	NAI + <i>n</i> -hexane	0.02
sec-butyl acetate	I ₃ - alone	0.02
	I_3 - + <i>n</i> -hexane	0.01
	EDA alone	0.02
	EDC alone	0.02
	Native PcL	0.009
	NAI alone	0.008
Sec-butyl butyrate	NAI + <i>n</i> -hexane	0.01
	I ₃ - alone	0.01
	I_3 + <i>n</i> -hexane	0.02
	EDA alone	0.01
	EDC alone	0.008
	Native PcL	0.008
	NAI alone	0.009
	NAI + <i>n</i> -hexane	0.01
Sec-butyl hexanoate	I ₃ - alone	0.02
	$I_3^- + n$ -hexane	0.01
	EDA alone	0.02
	EDC alone	0.01
	Native PcL	0.01
	NAI alone	0.01
	NAI + <i>n</i> -hexane	0.008
Hexan-2-yl acetate	I ₃ - alone	0.01
	I_3 + <i>n</i> -hexane	0.01
	EDA alone	0.01
	EDC alone	0.01
	Native PcL	0.01
	NAI alone	0.01
	NAI + <i>n</i> -hexane	0.008
Octan-2-yl acetate	I ₃ - alone	0.01
	I_{3} + <i>n</i> -hexane	0.01
	EDA alone	0.02
	EDC alone	0.02

Table S6 The enantioselectivity standard deviation (three parallel experiments) of the hydrolysis of *sec*-butyl acetate, *sec*-butyl butyrate, *sec*-butyl hexanoate, *hexan*-2-yl acetate and *octan*-2-yl acetate catalyzed by the native and modified *PcL*.

Substrate	Modification reagent	ees
	Native PcL	7%
	NAI alone	9%
	NAI + <i>n</i> -hexane	47%
sec-butyl acetate	I ₃ - alone	26%
	I_3 + <i>n</i> -hexane	32%
	EDA alone	36%
	EDC alone	47%
	Native PcL	8%
	NAI alone	10%
Sec-butyl butyrate	NAI + <i>n</i> -hexane	48%
	I ₃ - alone	27%
	I_3 - + <i>n</i> -hexane	34%
	EDA alone	33%
	EDC alone	46%
	Native PcL	8%
	NAI alone	9%
	NAI + <i>n</i> -hexane	48%
Sec-butyl hexanoate	I ₃ - alone	27%
	$I_3 + n$ -hexane	33%
	EDA alone	38%
	EDC alone	47%
	Native PcL	12%
	NAI alone	16%
	NAI + <i>n</i> -hexane	55%
Hexan-2-yl acetate	I ₃ - alone	32%
	I_3 - + <i>n</i> -hexane	45%
	EDA alone	47%
	EDC alone	53%
	Native PcL	15%
	NAI alone	20%
	NAI + <i>n</i> -hexane	61%
Octan-2-yl acetate	I ₃ - alone	47%
	$I_3^- + n$ -hexane	52%
	EDA alone	49%
	EDC alone	57%
		2770

Table S7 The eesof the hydrolysis of sec-butyl acetate, sec-butyl butyrate, sec-butyl hexanoate, hexan-2-yl acetate and octan-2-ylacetate catalyzed by the native and modified PcL.

Enantiomeric excess of (*R*)-secondary alcohol (ee_s) and enantioselectivity (E value) were calculated as defined below, where A_R and A_S were the peak area of (*R*)-secondary alcohol and (*S*)-secondary alcohol. Internal standard was n-octane which was used to determine the concentration. Conversion ratio was defined as c, c = ee_s/(ee_s+ee_p).

$$ee_s = \frac{A_R - A_S}{A_R + A_S}$$
 $E = \frac{\ln [(1-c)(1-ee_s)]}{\ln [(1-c)(1+ee_s)]}$