Supporting Information

Two-step photocatalytic water splitting into H_2 and O_2 using layered metal oxide $KCa_2Nb_3O_{10}$ and its derivatives as O_2 evolving photocatalysts with IO_3^{-}/I^{-} or Fe^{3+}/Fe^{2+} redox mediator

Hajime Suzuki,^a Osamu Tomita,^a Masanobu Higashi,^a Ryu Abe*^{a,b}

^a Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan ^b JST-CREST, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan

E-mail: ryu-abe@scl.kyoto-u.ac.jp

Fig. S1 TEM images of (a) exfoliated nanosheets and (b) ex-Ca₂Nb₃O₁₀/K⁺.

Fig. S2 XRD patterns of ex-Ca_2Nb_3O_{10}/K^+(500 \ ^{\circ}C) and after water treatment.

Fig. S3 Time courses of O₂ evolution over 100 mg of H⁺/KCa₂Nb₃O₁₀ and ex-Ca₂Nb₃O₁₀/K⁺/H⁺, in 5 mM NaIO₃ aqueous solution under UV light irradiation ($\lambda > 300$ nm, Xe lamp).

Fig. S4 Time courses of O₂ evolution over ex-Ca₂Nb₃O₁₀/K⁺ samples loaded with 0.3 wt% of various metal oxides (PtO, RuO₂, IrO₂, Rh₂O₃, CoO_x) in 5 mM NaIO₃ aqueous solution under UV light irradiation ($\lambda > 300$ nm, Xe lamp).

Fig. S5 CV profiles of FTO substrates loaded with various metal oxides in the presence of H_2O (360 mL).

Fig. S6 CV profiles of FTO substrates loaded with various metal oxides in the presence of $Fe^{3+}(5 \text{ mM}, \text{pH } 2.3)$.

Fig. S7 Time course of gas evolution over Pt/SrTiO₃:Rh from KI aqueous solution (5 mM, pH=12.0) under UV light irradiation ($\lambda > 300$ nm, Xe lamp).