Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Heterogeneous Double-Activation Catalysis: Rh Complex and Tertiary Amine on Same

Solid Surface for the 1,4-Addition Reaction of Aryl- and Alkylboronic Acids

Hiroto Noda, Ken Motokura, Wang-Jae Chun, Akimitsu Miyaji, Sho Yamaguchi, Toshihide Baba

Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan

Contents	
NMR measurement	S2
XAFS data acquisition	S3
Materials	S3
Preparation of catalysts	S4
Catalytic reaction procedures	S6
Solid-state ²⁹ Si MAS NMR spectra	S 7
XPS analysis	S 8
XANES analysis	S9
EXAFS analysis	S10
Result of curve-fitting analysis of EXAFS	S11
Effect of additional free amine on 1,4-addition reaction	S12
Hot filtration	S13
Kinetic study	S14
¹³ C CP/MAS NMR of SiO ₂ /diamine/Rh/Me	S16
¹ H NMR and ¹³ C NMR spectra of products	S17
References	S19

Experimental Section

NMR measurements

¹H and ¹³C NMR spectra were recorded in CDCl₃ with an AVANCE 400 spectrometer (Bruker) operating at 400 and 100.6 MHz, respectively. Solid-state ¹³C and ²⁹Si MAS NMR spectra (MAS rate = 5 kHz) were recorded with an AVANCE III spectrometer (Bruker) operating at 100.6 and 79.5 MHz, respectively. The cross-polarization (CP) contact time in the ¹³C CP/MAS NMR measurements was 1.0 ms. The accumulation number and delay time were about 20000 and 20 s (¹³C), and 10000 and 15 s (²⁹Si), respectively. Adamantane (δ 38.52 and 29.47 ppm) and hexamethylcyclotrisiloxane (δ -9.66 ppm) were used as external standards for the calibration of chemical shifts.

Both ¹¹B MAS NMR spectroscopy and MQ MAS experiments were performed using a Bruker Avance III spectrometer (9.4 T) operating at 128.3 MHz for boron using a 4.0 mm MAS probe. MAS was performed at a rotation speed of 14 kHz. $\pi/3$ pulses with an rf field strength of 111 kHz was used. Chemical shifts were referenced relative to an aqueous solution of B(OH)₃. The relaxation delays were 10 s. The ¹¹B 2D3Q MAS NMR spectra were recorded by three-pulse z-filtering with rotor synchronization at a spinning rate of 12 kHz. The excitation pulse was a π pulse, and the conversion pulse was a $\pi/3$ pulse. The conversion delay was 10 s. For each t_1 increment, 1000 scans were used to accumulate signals. Fourier transform with respect to t1 and t2 led to pure adsorption 2D spectra. The spectra were sheared, so that the orthogonal projection of the 2D spectrum on the isotropic axis gave a high-resolution 1D spectrum free of any anisotropic broadening.

XAFS data acquisition

XAFS was measured in transmission mode at the BL7 of the Kyusyu Synchrotron Light Research Center (Proposal number: 1404015F, SAGA-LS, Saga, Japan). The electron storage ring was operated at 1.4 GeV-137 mA. Synchrotron radiation from the storage ring was monochromatized with a Si (220) channel-cut crystals. Ionization chambers filled with Ar gas and Kr were used as detectors monitoring incident X-rays (I₀) and transmitted one (I), respectively. The angle of the monochromator was calibrated by using Rh foil, the inflection point of which at the edge was set at 23220 eV.

XAFS spectra were analyzed by using Athena and Altemis.^[1] The backscattering amplitude and phase shift of Rh-C, Rh-O, Rh-Rh were calculated using FEFF8.4 code^[2] with the crystallographic data of a bulk Rh and [Rh(COD)OH]₂ complex.

A goodness of curve fit was estimated using the following equation.

$$R_{factor} = \sqrt{\frac{k^n \chi_{exp}(k) - k^n \chi_{cf}(k)}{k^n \chi_{experimental}(k)}}$$

where $\chi_{exp}(k), \chi_{cf}(k)$ are the experimental data, curve-fitted data (theoretical), respectively.

Materials

Aerosil® 300 (NIPPON AEROSIL Co.) was used as the SiO₂. SiO₂ was treated at 120 °C under vacuum before use. Unless otherwise noted, all other materials were purchased from Wako Pure Chemicals, Tokyo Kasei Co., Kanto Kagaku Co., and Aldrich Inc. and were used without further purification. 1,3,5-Triisopropylbenzene was used as an internal standard in catalytic reactions.

Preparation of Catalyst

Preparation of SiO₂/diamine/NEt₂ and SiO₂/diamine/Rh/NEt₂

The SiO₂ (Aerosil[®] 300, 300 m²g⁻¹, SiO₂ content: >99.9%) was pretreated at 120 °C for 3 h under vacuum. Dried SiO₂ (0.64 g) was placed in a round-bottom flask and treated with 15.0 mL of а toluene solution containing 3-(2-Aminoethylamino)propyltrimethoxysilane (0.40 mmol, 9.0×10^{-2} g) and 3-diethylaminopropyltrimethoxysilane (0.40 mmol, 9.5 \times 10⁻² g) at 40 °C for 1 h. Toluene was removed by vacuum evaporation, affording SiO₂/diamine/NEt₂. Then, 0.21 g of SiO₂/diamine/NEt₂ was treated with 3.0 mL of dioxane containing [Rh(cod)OH]₂ (5.0 \times 10⁻² mmol, Rh: 0.10 mmol) at 90 °C for 4 h. The resulting mixture was evaporated and dry under vacuum, affording SiO₂/diamine/Rh/NEt₂-a. For the detailed reaction conditions used in the preparation of the other SiO₂-supported Rh catalysts, see Table S1.

Table S1. Detailed conditions for preparation of catalysts

Catalytic Reaction Procedures

1,4-Addition reaction using silica-supported Rh catalyst

The silica-supported Rh catalyst (6.0 μ mol), dioxane/H₂O (10/1, 2.0 mL), cyclohexenone (1) (1.0 mmol) and phenylboronic acid (2) (1.5 mmol) were placed in a Pyrex glass reactor. The resulting mixture was stirred vigorously for 1 h at 60 °C under Ar. The product was confirmed by GC-MS and NMR. Yields and conversion were determined by ¹H NMR using a CDCl₃ solution of the reaction mixture.

Treatment of SiO₂/NEt₂ with phenylboronic acid for NMR analysis of the reaction intermediate

 SiO_2/NEt_2 (0.10 g, N: 0.083 mmol), dioxane/H₂O (10/1, 1.0 mL), and phenylboronic acid (2) (0.083 mmol) were placed in a Pyrex glass reactor. The resulting mixture was vigorously stirred for 5 min at 40 °C under Ar. Then, the solvent was evaporated under vacuum, and the resulting solid was transferred to NMR sample rotor.

Treatment of SiO₂/diamine/Rh/NEt₂ with phenylboronic acid for ¹¹B NMR analysis of the reaction intermediate

 $SiO_2/diamine/Rh/NEt_2$ (0.19 g, tertiary amine: 0.085 mmol), dioxane/H₂O (10/1, 1.0 mL), and phenylboronic acid (2) (0.085 mmol) were placed in a Pyrex glass reactor. The resulting mixture was vigorously stirred for 5 min at 40 °C under Ar. Then, the solvent was evaporated under vacuum, and the resulting solid was transferred to NMR sample rotor.

Solid-State ²⁹Si MAS NMR Spectra

Figure S1. Solid-state ²⁹Si MAS NMR spectra of (A) SiO₂ and (B) SiO₂/diamine/Rh/NEt₂-a.

 $Q^3/(Q^2 + Q^3 + Q^4): 0.23 \rightarrow 0.17$ $Q^2/(Q^2 + Q^3 + Q^4): 0.02 \rightarrow <0.01$

The total silanol content in the parent SiO₂ (4.2 mmol/g) was calculated from the Q^3/Q_{total} and Q^2/Q_{total} values and the molecular weight of SiO₂. This value was close to the amount of silanol calculated on the basis of the weight loss of the SiO₂ via thermogravimetric (TG) analysis (4.6 mmol/g). The amount of silanol decrease (1.5 mmol/g) was calculated from the silanol content of the parent SiO₂ determined by ²⁹Si NMR and the Q^3/Q_{total} and Q^2/Q_{total} values after the silane-coupling reaction.

XPS Analysis

Figure S2. XPS spectra for Rh $3d_{5/2}$ from (a) SiO₂/diamine/Rh/NEt₂-a and (b) SiO₂/diamine/Rh-a.

Figure S3. Rh K-edge XANES spectra of (A) SiO₂/diamine/Rh/NEt₂-a, (B) SiO₂/diamine/Rh/NEt₂-b, and (C) SiO₂/diamine/Rh/NEt₂-f.

EXAFS Analysis

Figure S4. EXAFS spectra of (a) SiO₂/diamine/Rh/NEt₂-a (solid line) and (b) recovered SiO₂/diamine/Rh/NEt₂-a after the 1,4-addition between **1** and **2** (dashed line).

Results of Curve-Fitting Analysis of EXAFS

Figure S5. FT of k^3 -weighted Rh K-edge EXAFS spectra for SiO₂/diamine/Rh/NEt₂-a (solid line), and fitted spectra for SiO₂/diamine/Rh/NEt₂-a (dashed line). (FT: 3–13 Å, FF: 1.2–2.0 Å)

Effect of Additional Free Amine on 1,4-addition Reaction

Figure S6. Effect of additional free amine with the SiO₂/diamine/Rh-a catalyst on the product yield of the 1,4-addition of phenylboronic acid to cyclohexenone. Reaction conditions: cyclohexenone (1) (1.0 mmol), phenylboronic acid (2) (1.5 mmol), SiO₂/diamine/Rh (Rh: 6.0 μ mol), 1,4-dioxane/H₂O (10/1, 2.0 mL), 60 °C, 1h, free tertiary amine (diethylbutylamine: 0–1.027 mmol).

Hot Filtration

Figure S7. Effect of removal of SiO₂/diamine/Rh/NEt₂ (Rh: 0.388mmol/g, tertiary amine: 1.19 mmol/g) catalyst on product yield of 1,4-addition between **1** and **2**. Without removal of SiO₂/diamine/Rh/NEt₂-a (\bullet); an arrow indicates the removal of SiO₂/diamine/Rh/NEt₂-a (\bullet); Reaction conditions: phenylboronic acid (**1**) (1.0 mmol), cyclohexenone (**2**) (1.5 mmol), SiO₂/diamine/Rh/NEt₂-a (Rh: 6.0 µmol), 1,4-dioxane/H₂O (10/1, 2.0 mL), 60 °C.

Kinetic Study

Figure S8. Plot of log[rate] vs. log[cyclohexenone] for the reaction of **1** with **2**. Reaction conditions: cyclohexenone (**1**), phenylboronic acid (**2**) (1.5 mmol), SiO₂/diamine/Rh-a (Rh: 6.0 μ mol), 1,4-dioxane/H₂O (10/1, 2.0 mL), 60 °C.

Figure S9. Plot of log[rate] vs. log[PhB(OH)₂] for the reaction of **1** with **2**. Reaction conditions: cyclohexenone (**1**) (1.0 mmol), phenylboronic acid (**2**), SiO₂/diamine/Rh-a (Rh: 6.0 μ mol), 1,4-dioxane/H₂O (10/1, 2.0 mL), 60 °C. Slope (log[rate]/log[PhB(OH)₂]) = 0.995 (r^2 = 0.97).

¹³C CP/MAS NMR of SiO₂/diamine/Rh/Me

Figure S10. (A) Solid-state ¹³C CP/MAS NMR spectrum of SiO₂/diamine/Rh-a, (B) liquid-state ¹³C NMR spectrum of trimethoxymethylsilane, and (C) solid-state ¹³C CP/MAS NMR spectrum of SiO₂/diamine/Rh/Me.

¹H and ¹³C NMR spectra of products

Table 7

The ¹H NMR chemical shifts of the products (Table 7, entries 1–3, 5 and 6) corresponded with the literature values.^[3] ¹H NMR chemical shift of products (Table 7, entry 4) corresponded with the literature.^[4]

Scheme 9

¹**H NMR** (400 MHz, CDCl₃) δ 0.86-0.93 (t, 3H), 1.19-1.50 (m, 11H), 1.58-1.71 (m, 1H), 1.71-1.82 (m, 1H), 1.85-1.93 (m, 1H), 1.94-2.12 (m, 2H), 2.19-2.30 (m, 1H), 2.30-2.39 (m, 1H), 2.39-2.51 (m, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 14.3, 22.8, 25.5, 26.8, 29.6, 31.6, 32.0, 36.8, 39.3, 41.7, 48.5, 212.2. These spectra were in agreement with the literature.^[5]

References

- [1] (a) Ravel, B.; Newville, M. Syncrotron Rad. 2005, 12, 537. (b) Newville, J. Syncrotron Rad. 2001, 8, 322.
- [2] (a) Ankudinov, A. L., Ravel, B., Rehr, J. J.; Conradson, S. D. Phys Rev B 1998, 58,
- 7565. (b) Rehr, J. J.; Albers, R. C. Rev. Mod. Phys. 2000, 72, 621. (c) Rehr, J. J.; Albers,
- R. C.; Zabinsky, S. I. Phys. Rev. Lett. 1992, 69, 3397.
- [3] Stemmler, R. T.; Bolm, C. J. Org. Chem. 2005, 70, 9925.
- [4] Iizuka, M.; Kondo, Y. Eur. J. Org. Chem. 2008, 7, 1161.
- [5] Shen, Z.-L.; Cheong, H.-L.; Loh, T.-P. Tetrahedron Lett. 2009, 50, 1051.