Supporting Information

Aerobic Oxidation of α-Pinene Catalyzed by Carbon Nanotubes

Yonghai Cao, Yuhang Li, Hao Yu*, Feng Peng*, Hongjuan Wang

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640 (China)

^{*} Tel. & Fax: +86 20 8711 4916.

E-mail address: yuhao@scut.edu.cn (H. Yu); cefpeng@scut.edu.cn (F. Peng).

Precursor	o turo o an bouro	N/(C+N)	N _P	N _{Pyr}	Nq	Nox	Nads
(v% aniline)	atmosphere	(%)	(%)	(%)	(%)	(%)	(%)
0		0.00	0	0	0	0	0
10	A	0.31	28.7	17.1	33.9	6.1	14.3
50	Ar	0.63	35.2	5.4	37.9	13.5	7.9
100		2.21	29.8	2.4	53.1	10.8	3.8
0	NILI	3.44	30.5	6.8	43.1	11.9	7.7
100	1 NH 3	4.36	28.1	16.1	38.8	9.7	7.2

Table S1 – Quantitative XPS analysis of the N-CNTs

		Metal amount ^[b]	•• (**)	Selectivity ^[c] (%)				
Catalyst	Metal species	(wt%)	X (%)		°	ОН	OOH	
NCNT-p ^[d]		0.263	53.2	35.9	12.6	18.1	17.8	
NCNT-w ^[e]	F	0.015	54.5	37.9	14.2	17.6	15.4	
FeOx/NCNT	Fe	3.284	52.4	39.8	11.9	18.4	18.1	
FeNx/NCNT		3.682	53.9	37.1	16.6	18.1	14.8	
NCNT-p ^[d]		0.089	53.2	35.9	12.6	18.1	17.8	
NCNT-w ^[e]	M	0.013	54.5	37.9	14.2	17.6	15.4	
MoOx/NCNT	Мо	2.65	50.8	35.6	13.3	16.9	19.4	
MoNx/NCNT		1.83	52.9	38.1	17.8	17.1	15.5	

Table S2 – Effect of metal residuals on α -pinene oxidation catalyzed by NCNTs^[a]

[a] Reaction Conditions: 80 °C, 1.5 MPa O₂, 10 mL α-pinene, 20 mL CH₃CN, 2 mL o-DCB, 70 mg catalyst,
4 h. The NCNTs were synthesized by xylene in the NH₃ atmosphere. [b] Measured by ICP-AES. [c]
Selectivity of major products. The by-products include pinocarveol, pinenol, myrtenal and others. [d]
As-prepared NCNTs. [e] HCl-washed NCNTs.

Synthesis condition ^[b]	SSA (m²/g)	X ^[c] (%)	$r_{w}^{[d]}$	$r_s^{[e]}$	Selectivity ^[f] (%)				
			(mmol	(mmol	o	o	ОН	оон	
			g ⁻¹ h ⁻¹)	m ⁻² h ⁻¹)	$\rightarrow \downarrow \downarrow$		LI	14	
0%AN+Ar	27.0	28.0	29.5	1.10	33.2	7.9	8.3	36.4	
10% AN+Ar	48.5	29.2	36.9	0.76	32.0	9.2	11.4	35.9	
50% AN+Ar	71.2	31.5	56.1	0.79	29.8	9.2	11.4	35.0	
100%AN+Ar	49.3	34.2	57.7	1.17	35.6	9.0	11.5	30.3	
0%AN+NH3	129.3	52.7	217.9	1.68	35.7	12.8	14.9	22.7	
100% AN+NH ₃	155.1	54.5	272.4	1.76	37.8	14.2	17.5	15.3	

Table S3 – Effect of nitrogen content of NCNTs on the aerobic oxidation of α -pinene^[a]

[a] Reaction Conditions: 80 °C, 1.5 MPa O₂, 10 mL α -pinene, 20 mL CH₃CN, 2 mL o-DCB, 70 mg catalyst, 4 h. [b] The volume fraction of aniline in precursor + reaction atmosphere. [c] α -Pinene conversion. [d] Initial reaction rate of α -pinene consumption normalized by catalyst mass. [e] Initial reaction rate of α -pinene consumption normalized by catalyst surface. [f] Selectivity of major products. The by-products include pinocarveol, pinenol, myrtenal and others.

Table S4 – Properties and performances of NCNTs (AN+NH₃) in the aerobic oxidation of α -pinene with

HNO ₃	Annealing ^[c]	SSA	Raman	Boehm	Boehm titration (mmol g ⁻¹) X		х	Selectivity (%)			
reflux ^[b] (h)	(K)	(m ² /g)	I_D/I_G	-OH	-C=O	-COOH	(%)		o	OH	ООН
0	383 ^[d]	127.8	0.87	0.30	0.18	0.12	24.6	33.8	7.9	6.1	37.9
8	383 ^[d]	149.4	1.16	0.59	1.13	0.97	6.6	26.2	12.5	5.4	35.4
8	1173	_	0.92	n.d.	n.d.	n.d.	13.5	32.2	9.1	9.1	31.6

different HNO₃ oxidation durations and annealing temperatures.^[a]

[a] Conditions: 80 °C, 1.5 MPa O₂, 10 mL α-Pinene, 20 mL CH₃CN, 2 mL o-DCB, 70 mg catalyst, 4 h. [b]

9 M HNO₃, 140 °C. [c] In Ar gas for 4 h. [d] Vacuum drying at 333 K overnight. [e] Not detected.

Fig.S1 – TEM images of (a) CNTs and (b) NCNTs

Fig. S2 – The effect of oxygen pressure on the α -pinene oxidation catalyzed by NCNTs.

Fig. S3 – TEM images of (a) Fe₂O₃ loaded N-CNTs, (b) iron nitrides loaded N-CNTs and (c)

XRD patterns of the catalysts.

Fig. S4 – XRD patterns of the MoOx/NCNT and MoNx/NCNT.

Fig. S5 – Raman spectra of the pristine NCNTs and used NCNT for 5 times.

Fig. S6 – Evolution of distances between the centroid of radical and the CNT axis. Horizontal lines represent the averages. R1: $R_{(a)}$ -O- $_{(b)}R_{(c)}$, R2: $R_{(a)}$ -OO- $_{(b)}R_{(c)}$.