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Fig. S1 Relative energy profile and geometries of key intermediates and transition
states identified for the decomposition of monomeric formic acid to CO, along with
the formate pathway in the gas phase on Pt(111). The sum energy of trans-HCOOH
and the clean Pt(111) surface is taken as the zero energy reference. The C, H, O and

Pt atoms are shown in gray, white, red and dark blue, respectively. The distances are

in A.
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Fig. S2 Relative energy profile and geometries of key intermediates and transition

states identified for the decomposition of monomeric formic acid to CO, along with

the formate pathway with the presence of water on Pt(111). The sum energy of trans-

HCOOH, four water molecules and the clean Pt(111) surface is taken as the zero

energy reference. The C, H, O and Pt atoms are shown in gray, white, red and dark

blue, respectively. The distances are in A.
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Fig. S3 Relative energy profile and geometries of key intermediates and transition
states identified for the decomposition of dimeric formic acid to CO, along with the
formate pathway in the gas phase on Pt(111). The sum energy of two trans-HCOOH
molecules and the clean Pt(111) surface is taken as the zero energy reference. The C,
H, O and Pt atoms are shown in gray, white, red and dark blue, respectively. The

distances are in A.
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Fig. S4 Relative energy profile and geometries of key intermediates and transition
states identified for the decomposition of dimeric formic acid to CO, along with the
formate pathway with the presence of water on Pt(111). The sum energy of trans-
HCOOH, three water molecules and the clean Pt(111) surface is taken as the zero
energy reference. The C, H, O and Pt atoms are shown in gray, white, red and dark

blue, respectively. The distances are in A.
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Fig. S5 Geometries of key intermediates and transition states identified for the
decomposition of monomer of frans-formic acid in the gas phase on Pt(111). The C,
H, O and Pt atoms are shown in gray, white, red and dark blue, respectively. The

distances are in A.
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Fig. S6 Relative energy profiles for the decomposition of monomeric trans-HCOOH

to CO, and CO in the gas phase. The sum energy of trans-HCOOH and the clean

Pt(111) surface is taken as the zero energy reference. CO pathway (I) donates the

pathway that involving the COOH intermediate, and CO pathway (II) donates the
pathway that involving the HCO intermediate.
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Fig. S7 Geometries of key intermediates and transition states identified for the
decomposition of monomeric cis-formic acid with the presence of water on Pt(111).
The C, H, O and Pt atoms are shown in gray, white, red and dark blue, respectively.

The distances are in A.
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Fig. S8 Relative energy profiles for the decomposition of monomeric cis-HCOOH to

CO; and CO with the presence of water on Pt(111). The sum energy of cis-HCOOH,

four water molecules and the clean Pt(111) surface is taken as the zero energy

reference.



Table S1

intermediate from the present and previous works

Calculated activation barriers (AE) and reaction energies (AH) (in eV) of the decomposition of formic acid via the COOH

C-H bond cleavage

O-H bond cleavage

C-OH bond cleavage

Adsorbates Our work Literatures Our work Literatures Our work Literatures
AE AH AE AH AE AH AE AH AE AH AE AH
cis- CO, path  0.50¢ -0.84¢ 0.503 - 0.73¢  0.16¢  1.02%8 - - - - -
HCOOH COpath 0.14¢ 1.11¢ - - - - - - 0.88¢  0.20¢  over 1.0032 -
COnoath 0780 50,71 1.5820 1.8320 -0.3320-0.2320 - 0630 013 0.9020  -0.022°
a . . . . - - - -
trans- 2P 1.97% 0.36%6 0.9420 0,022
HCOOH 1.58201.8320 -0.3320-0.2320 - 1.00>  0.29°
COpath 025 -1.10 - - - - 1.5320 -0.2220
1.9736 0.3636 2200 0.07°
cissHCOOH ~ CO,path  1.69¢  0.10¢ - - -0.05¢ -0.34c 0487  -0.257 - - - -
+4H,0 COpath 1.69¢ 0.10¢ - - - - - - 0.57¢  -0.12¢ - -
1.057  0.007 -
trans- CO,path 0264 -1.01¢ 1.67200.45'" -0.327 0.35¢  -0.32¢ - - - -
24620 0202
HCOOH
1.807 3.20202 -0.737-1.05%-
+4H,0 COpath 0267 -1.01¢ 1.67%0.45'" -0.327 - - - - 0.19¢  -0.50¢
1.3920 27420 (.5820-0.5320
CO, path  0.26° -0.51¢ 0.69¢  -0.76¢ - - - - - -
2HCOOH COpath  026¢ -0.51¢ - - - - - - 0.45¢  0.18¢ - -
2JHCOOH  COpath 042" -1.05 - - 0.15 -0.17 - - - - - -
+3H,0 COpath 042 -1.05 - - - - - - 0.1  -0.33/ 0.66274 0.5127

@ b ¢ d.e fThe activation energies and reaction energies obtained from Figs. 2, S6, S8, 4, 6, and 8, respectively. ¢The barrier involved in a synergetic process with

the simultaneous cleavage of C-H and C-OH bond. "The barrier involved in a synergetic process with the simultaneous formation of CO, and CO.



Table S2  Calculated activation barriers (£,.) and reaction energies (AH) (in eV) of the decomposition of formic acid initiated from

the O-H scission

O-H bond cleavage Formate adjustment” C-H bond cleavage
Adsorbates Our work Our work Literatures Our work Literatures
AE AH AE AH AE AH AE AH AE AH
trans-HCOOH 0.60% -0.11° 1.37% 0.84¢ 1.16%0 0.5520 0.44% -1.15° - -
trans-HCOOH 0.5820 -0.5920
1.18¢ 1.11¢ - - 1.27%0 0.85%0 0.11¢ -1.14¢
+4H,0 0.9220 -0.6820
cis-HCOOH
0.974 0.564 0.054 0.014 - - 0.544 -0.514 - -
+ 4H,0
2HCOOH 1.19¢ -0.11¢ 1.35¢ 0.70¢ - - 0.59¢ -1.01¢ - -
2HCOOH : : : X , .
0.42/ -1.05 0.15 -0.17 - - 0.81/ -1.26/ - -
+ 3H,0

“Rotation or transformation of formate from bidentate form to monodentate one. » ¢ ¢ ¢ /The activation barriers and reaction energies
obtained from Figs. S1, S2, S8, S3, and S4, respectively.



