Supporting Information

Hydrogen Production by the Water-Gas Shift Reaction using CuNi/Fe₂O₃ Catalyst

Ajay Jha,^a Dae-Woon Jeong,^a Jae-Oh Shim,^a Won-Jun Jang,^a Yeol-Lim Lee,^a Chandrashekhar V. Rode^b and Hyun-Seog Roh^{*a}

^a Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju,

Gangwon 220-710, S. Korea. E-mail: <u>hsroh@yonsei.ac.k</u>; Fax: +82-33-760-2571

^b Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory,

Pune-411008, India.

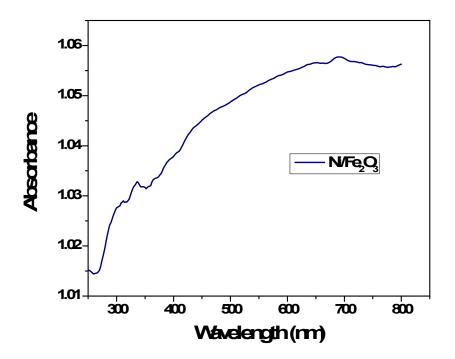


Fig. S1. Diffuse reflectance spectrum of the Ni/Fe₂O₄ catalyst.

Fig. S1 shows the diffuse reflectance spectrum of the Ni/Fe₂O₄ catalyst after reduction. It shows two bands; the first in the range of 300-400 nm and the second at ~700 nm. The initial band was corresponds to the charge transfer transitions from O^{2-} 2p to Fe³⁺ 3d-orbitals¹ and the last band was attributed to the NiFe₂O₄, which corresponds to the Ni ions in the octahedral sites.² This suggests that Ni in the Ni/Fe₂O₄ catalyst was present in the oxidized form under the reduction conditions used for the reaction not as a metallic phase (Ni⁰).

References

R. Suresh, K. Giribabu, R. Manigandan, A. Stephen and V. Narayanan, *RSC Adv.*, 2014, 4, 17146.

 S. Balaji, R. K. Selvan, L. J. Berchmans, S. Angappan, K. Subramanian, C. O. Augustin, *Mater. Sci. Eng. B*, 2005, **119**, 119.