Supporting Information

n-Bu₄NI-Catalyzed Direct Amination of Ethers with Aryl Tetrazoles and Triazoles *via* Cross-Dehydrogenative Coupling Reaction

Liang Wang^a*, Kai-qiang Zhu ^a, Wen-ting Wu^a, Qun Chen^a and Ming-yang He^a* [†] School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China. lwcczu@126.com; hemingyangjpu@yahoo.com

1 General experimental details	2		
2 KIE experiment 3 Characterization data 4 Copies of ¹ H NMR and ¹³ C NMR spectra	2		
		5 Reference	29

1 General experimental details

Chemicals were used as received without special purification unless stated otherwise. Aryl tetrazoles and triazoleswere prepared according to the lietrature.^[1,2] ¹H and ¹³C NMR were recorded at ambient temperature on a 400 MHz NMR spectrometer. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. The coupling constants *J* are given in Hz. Melting points (m.p.) are determined with a MPA 100 apparatus and are not corrected. High-resolution mass spectrometry (HRMS) was performed on a TOF MS instrument with an ESI source.

General procedure for the amination of alkylethers

In a sealed tube, n-Bu₄NI (22.1 mg, 0.06 mmol) was added to the mixture of alkyl ethers **1** (1 mL), aryl tetrazole **2** or triazoles **4** (0.3 mmol) and *t*-BuOOH (70% aqueous, 1.5 mmol, 5 equiv) at room temperature. The reaction mixture was stirred at 80 °C for 12 h. After reaction, the mixture was allowed to cool to room temperature. The solvent was then removed under vacuum, and the residue was purified by silica gel chromatography using a mixture of PE/EA to afford the desired product **3** and **5**.

2 KIE experiment

In a sealed tube, the mixture of 1a (0.5 mL) and 1a' (0.5 mL) with 2a was treated by standard procedures and heated for 12 h. The mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give product **3aa** and [**D**₇]-**3aa**. The mixture was analyzed using ¹H NMR spectrometer. As shown in Scheme S1, the ratio of **3aa** and [**D**₇]-**3aa** is 12.8.

Figure S1 The ¹H NMR spectrum of the KIE results

3 Characterization data

N = N N = N N = N $2-(1,4-dioxan-2-yl)-5-phenyl-2H-tetrazole (3aa). white solid (54.3 mg, 78%), mp: 51-53 °C; ¹H NMR (CDCl₃, 400 MHz) <math>\delta$ 8.24-8.11 (m, 2H), 7.48-7.47 (m, 3H), 6.09 (dd, J = 6.1, 2.9 Hz, 1H), 4.43 (dd, J = 12.0, 6.1 Hz, 1H), 4.16 (dd, J = 12.0, 2.9 Hz, 1H), 4.09 (dd, J = 12.0, 2.9 J = 9.8, 5.8 Hz, 1H), 3.98-3.92 (m, 1H), 3.90-3.85 (m, 2H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.2, 130.5, 128.8, 127.0, 126.9, 84.0, 67.1, 65.8, 64.9 ppm; HRMS (ESI): Calcd. for C₁₁H₁₂N₄NaO₂ (M+Na)⁺ 255.0852, found 255.0860.

2-(1,4-dioxan-2-yl)-5-(*p***-tolyl)-2***H***-tetrazole (3ab). Light yellow oil (53.2 mg, 72%); ¹H NMR (CDCl₃, 400 MHz) \delta 8.05 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.07 (dd, J = 6.1, 2.9 Hz, 1H), 4.41 (dd, J = 12.0, 6.2 Hz, 1H), 4.19-4.04 (m, 2H), 3.98-3.83 (m, 3H), 2.39 (s, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) \delta 165.3, 140.7, 129.5, 126.9, 124.0, 84.0, 67.0, 65.8, 64.9, 21.4 ppm. HRMS (ESI): Calcd. for C₁₂H₁₄N₄NaO₂ (M+Na)⁺ 269.1009, found 269.1004.**

N \hat{N} 2-(1,4-dioxan-2-yl)-5-(*m*-tolyl)-2*H*-tetrazole (3ac). White solid (48.0 mg, 65%), mp: 54-55 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.01-7.97 (m, 2H), 7.39-7.27 (m, 2H), 6.09 (dd, J = 6.1, 2.8 Hz, 1H), 4.43 (dd, J = 12.0, 6.2 Hz, 1H), 4.19-4.10 (m, 2H), 3.98-3.86 (m, 3H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.4, 138.6, 131.3, 128.8, 127.6, 126.8, 124.2, 84.0, 67.1, 65.8, 65.0, 21.3 ppm. HRMS (ESI): Calcd. for C₁₂H₁₄N₄NaO₂ (M+Na)⁺ 269.1009, found 269.1015.

1V N 2-(1,4-dioxan-2-yl)-5-(*o***-tolyl)-2***H***-tetrazole (3ad). Light yellow oil (42.8 mg, 58%); ¹H NMR (CDCl₃, 400 MHz) \delta 8.08-7.92 (m, 2H), 7.39-7.27 (m, 2H), 6.08 (dd,** *J* **= 6.1, 2.9 Hz, 1H), 4.43 (dd,** *J* **= 12.0, 6.1 Hz, 1H), 4.21-4.05 (m, 2H), 3.99-3.85 (m, 3H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) \delta 165.4, 138.6, 131.3, 128.8, 127.6, 126.7, 124.1, 84.0, 67.1, 65.8, 65.0, 21.3 ppm. HRMS (ESI): Calcd. for C₁₂H₁₄N₄NaO₂ (M+Na)⁺ 269.1009, found 269.1012.**

N[×]**N**[′] **5-(4-chlorophenyl)-2-(1,4-dioxan-2-yl)-2***H***-tetrazole (3ae). White solid (49.5 mg, 62%), mp: 101-103 °C; ¹H NMR (CDCl₃, 400 MHz) \delta 8.12 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 6.09 (dd, J = 6.0, 2.9 Hz, 1H), 4.43 (dd, J = 12.0, 6.0 Hz, 1H), 4.20-4.07 (m, 2H), 3.99-3.86 (m, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) \delta 164.4, 136.6, 129.2, 128.3, 125.4, 84.1, 67.1, 65.9, 64.9 ppm. HRMS (ESI): Calcd. for C₁₁H₁₁ClN₄NaO₂ (M+Na)⁺ 289.0463, found 289.0470.**

yellow solid (42.0 mg, 56%), mp: 81-83 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.20-8.16 (m, 2H),

7.19-7.12 (m, 2H), 6.08 (dd, J = 6.0, 2.8 Hz, 1H), 4.42 (dd, J = 12.0, 6.1 Hz, 1H), 4.18-4.10 (m, 2H), 3.99-3.87 (m, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.4, 163.7 (d, J = 157.1 Hz), 129.1 (d, J = 8.5 Hz), 128.6, 116.0 (d, J = 21.9 Hz), 84.1, 67.1, 65.9, 65.0 ppm. HRMS (ESI): Calcd. for C₁₁H₁₁FN₄NaO₂ (M+Na)⁺ 273.0758, found 273.0764.

N N **2**-**C 3 2-(1,4-dioxan-2-yl)-5-(4-(trifluoromethyl)phenyl)-2***H***-tetrazole (3ag).** Yellow solid (45.0 mg, 50%), mp: 104-106 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.32 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 6.12 (dd, *J* = 5.8, 2.8 Hz, 1H), 4.45 (dd, *J* = 12.1, 5.8 Hz, 1H), 4.21-4.10 (m, 2H), 4.01-3.89 (m, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 164.1, 148.6, 132.3 (q, *J* = 32.6 Hz), 130.3, 127.3, 125.9 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 270.6 Hz), 84.3, 67.0, 65.9, 64.9 ppm. HRMS (ESI): Calcd. for C₁₂H₁₁F₃N₄NaO₂ (M+Na)⁺ 323.0726, found 323.0730.

Yellow solid (52.7 mg, 67%), mp: 91-92 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.11 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 6.06 (dd, J = 6.2, 2.8 Hz, 1H), 4.42 (dd, J = 12.0, 6.3 Hz, 1H), 4.18-4.06 (m, 2H), 3.97-3.87 (m, 3H), 3.85 (s, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.1, 161.4, 128.5, 119.5, 114.2, 83.9, 67.1, 65.8, 65.0, 55.3 ppm. HRMS (ESI): Calcd. for C₁₂H₁₄N₄NaO₃ (M+Na)⁺ 285.0958, found 285.0961.

2-(1,4-dioxan-2-yl)-5-(3-nitrophenyl)-2H-tetrazole (3ai). Light yellow solid (53.2 mg, 64%), mp: 106-107 °C. ¹H NMR (CDCl₃, 400 MHz) δ 9.01 (s, 1H), 8.52 (d, J = 7.7 Hz, 1H), 8.32 (d, J = 8.1 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 6.13 (dd, J = 5.3, 2.7 Hz, 1H), 4.45 (dd, J = 12.1, 5.6 Hz, 1H), 4.21-4.10 (m, 2H), 4.00-3.89 (m, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 163.4, 148.6, 132.6, 130.1, 128.7, 125.1, 122.0, 84.4, 67.0, 65.9, 64.8 ppm. HRMS (ESI): Calcd. for C₁₁H₁₁N₅NaO₄ (M+Na)⁺ 300.0703, found 300.0709.

5-(benzo[d][1,3]dioxol-5-yl)-2-(1,4-dioxan-2-yl)-2H-tetrazole

(3aj). Light yellow solid (58.0 mg, 70%), mp: 104-106 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, J = 8.1 Hz, 1H), 7.63 (s, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.07 (d, J = 3.4 Hz, 1H), 6.04 (s, 2H), 4.42 (dd, J = 11.9, 6.2 Hz, 1H), 4.13 (m, 2H), 4.00-3.85 (m, 3H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.1, 149.6, 148.1, 121.6, 120.9, 108.7, 107.3, 101.5, 84.0, 67.1, 65.9, 65.0 ppm. HRMS (ESI): Calcd. for C₁₂H₁₂N₄NaO₄ (M+Na)⁺ 299.0751, found 299.0760.

5-phenyl-2-(tetrahydro-2*H***-pyran-2-yl)-2***H***-tetrazole (3ba). Colorless oil (56.6 mg, 82%). ¹H NMR (CDCl₃, 400 MHz) \delta 8.19-8.17 (m, 2H), 7.47 (dd, J = 5.0, 2.4 Hz, 3H), 6.05 (dd, J = 7.7, 2.8 Hz, 1H), 4.01 (dd, J = 9.6, 5.3 Hz, 1H), 3.83-3.79 (m, 1H), 2.49 (dd, J = 16.7, 8.9 Hz, 1H), 2.18-2.15 (m, 2H), 1.77-1.71 (m, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) \delta 164.9, 130.3, 128.8, 127.2, 126.9, 87.7, 66.8, 29.0, 24.5, 20.7 ppm. HRMS (ESI): Calcd. for C₁₂H₁₄N₄NaO (M+Na)⁺ 253.1060, found 253.1054.**

5-phenyl-2-(tetrahydrofuran-2-yl)-2*H***-tetrazole (3ca).** Colorless oil (31.8 mg, 49%). ¹H NMR (CDCl₃, 400 MHz) δ 8.16 (dd, J = 7.3, 2.1 Hz, 2H), 7.54-7.44 (m, 3H), 6.58 (dd, J = 6.4, 1.9 Hz, 1H), 4.32-4.09 (m, 2H), 2.77-2.64 (m, 1H), 2.58-2.45 (m, 2H), 2.24-2.10 (m, 1H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.1, 130.3, 128.8, 127.3, 126.9, 91.6, 70.2, 31.8, 24.0 ppm. HRMS (ESI): Calcd. for C₁₁H₁₂N₄NaO (M+Na)⁺ 239.0903, found 239.0910.

2-(1,3-dioxolan-4-yl)-5-phenyl-2*H***-tetrazole (3da).** Colorless oil (30.7 mg, 47%). ¹H NMR (CDCl₃, 400 MHz) δ 8.17 (d, J = 4.3 Hz, 2H), 7.49 (s, 3H), 6.67 (s, 1H), 5.44 (s, 1H), 5.30 (s, 1H), 4.66 (dd, J = 9.5, 2.4 Hz, 1H), 4.47 (dd, J = 9.4, 6.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.7, 130.6, 128.9, 127.0, 126.3, 97.1 86.7, 69.6 ppm. HRMS (ESI): Calcd. for C₁₀H₁₀N₄NaO (M+Na)⁺ 241.0696, found 241.0691.

2-(1,2-dimethoxyethyl)-5-phenyl-2*H***-tetrazole (3fa).** Colorless oil (38.6 mg, 55%); ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (dd, J = 7.4, 2.3 Hz, 2H), 7.51-7.47 (m, 3H), 5.97 (t, J = 6.1 Hz, 1H), 4.05 (d, J = 6.1 Hz, 2H), 3.41 (s, 3H), 3.39 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 130.5, 128.8, 127.2, 127.0, 91.5, 72.1, 59.5, 57.4 ppm. HRMS (ESI): Calcd. for C₁₁H₁₄N₄NaO₂ (M+Na)⁺ 257.1009, found 257.1017.

2-(1-butoxybutyl)-5-phenyl-2*H***-tetrazole (3ga).** Colorless oil (74.0 mg, 90%). ¹H NMR (CDCl₃, 400 MHz) δ 8.20-8.18 (m, 2H), 7.50-7.45 (m, 3H), 5.88 (t, *J* = 6.7 Hz, 1H), 3.55-3.50 (m, 1H), 3.40-3.34 (m, 1H), 2.33-2.12 (m, 2H), 1.56-1.27 (m, 6H), 0.96 (t, *J* = 7.4 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.2, 130.3, 128.8, 127.4, 126.9, 92.6, 69.6, 36.4, 31.0, 19.0, 17.9, 13.6, 13.4 ppm. HRMS (ESI): Calcd. for

1-(1,4-dioxan-2-yl)-4-(*p***-tolyl)-1***H***-1,2,3-triazole (5aa). Yellow solid (28.7 mg, 39%), mp: 86-87 °C. ¹H NMR (CDCl₃, 400 MHz) \delta 7.91 (s, 1H), 7.70 (d,** *J* **= 8.1 Hz, 2H), 7.23 (d,** *J* **= 7.9 Hz, 2H), 5.85 (dd,** *J* **= 7.7, 2.8 Hz, 1H), 4.38 (dd,** *J* **= 11.7, 7.7 Hz, 1H), 4.13 (dd,** *J* **= 11.7, 2.8 Hz, 1H), 4.08-3.93 (m, 2H), 3.85-3.83 (m, 2H), 2.38 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) \delta 148.8, 138.8, 132.0, 129.5, 126.9, 126.1, 85.1, 67.6, 65.8, 65.7, 21.3 ppm. HRMS (ESI): Calcd. for C₁₃H₁₅N₃NaO₂ (M+Na)⁺ 268.1056, found 268.1062.**

Cl² **4-(4-chlorophenyl)-1-(1,4-dioxan-2-yl)-1H-1,2,3-triazole** (5ab). Yellow solid (37.4 mg, 47%), mp: 104-105 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 5.85 (dd, J = 7.5, 2.8 Hz, 1H), 4.37 (dd, J = 11.8, 7.5 Hz, 1H), 4.13 (dd, J = 11.8, 2.8 Hz, 1H), 4.07-3.93 (m, 2H), 3.87-3.80 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 147.7, 134.7, 132.1, 129.1, 128.3, 127.4, 85.2, 67.6, 65.8, 65.7 ppm. HRMS (ESI): Calcd. for C₁₂H₁₂ClN₃NaO₂ (M+Na)⁺ 288.0510, found 288.0521.

Br⁻ **4-(4-bromophenyl)-1-(1,4-dioxan-2-yl)-1H-1,2,3-triazole** (5ac). Yellow solid (38.0 mg, 41%), mp: 115-117 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (s, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 5.84 (dd, J = 7.5, 2.8 Hz, 1H), 4.37 (dd, J = 11.7, 7.5 Hz, 1H), 4.12 (dd, J = 11.8, 2.8 Hz, 1H), 4.07-4.02 (m, 1H), 4.00-3.94 (m, 1H), 3.85-3.83 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 147.8, 132.0, 130.4, 128.7, 127.7, 122.9, 85.2, 67.5, 65.8, 65.6 ppm. HRMS (ESI): Calcd. for C₁₂H₁₂BrN₃NaO₂ (M+Na)⁺ 332.0005, found 332.0017.

OCH31-(1,4-dioxan-2-yl)-4-(2-methoxyphenyl)-1*H*-1,2,3-triazole(5ad).Yellow oil (25.1 mg, 32%), mp: 50-51 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.17 (s, 1H), 8.03 (dd, J= 7.7, 1.5 Hz, 1H), 7.37- 7.31 (m, 1H), 7.06-6.98 (m, 2H), 5.86 (dd, J = 7.8, 2.8 Hz, 1H), 4.39 (dd, J = 11.7, 7.8 Hz, 1H), 4.12 (dd, J = 11.7, 2.8 Hz, 1H), 4.06-3.95 (m, 2H), 3.93 (s, 3H), 3.85-3.83 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 156.8, 145.4, 135.6, 129.8, 128.7, 120.9, 118.7, 111.2, 85.0, 67.7, 65.8, 65.7, 55.4 ppm. HRMS (ESI): Calcd. for C₁₃H₁₅N₃NaO₃ (M+Na)⁺ 284.1006, found 284.1015.

Cl 4-(2-chlorophenyl)-1-(1,4-dioxan-2-yl)-1*H***-1,2,3-triazole (5ae). Oil (34.2 mg, 43%), mp: 72-74 °C. ¹H NMR (CDCl₃, 400 MHz) \delta 8.22 (s, 1H), 7.88 (dd,** *J* **= 7.3, 2.1 Hz, 1H), 7.47 (dd,** *J* **= 7.3, 1.6 Hz, 1H), 7.37-7.27 (m, 2H), 5.87 (dd,** *J* **= 7.5, 2.8 Hz, 1H), 4.39 (dd,** *J* **= 11.7, 7.5 Hz, 1H), 4.14 (dd,** *J* **= 11.8, 2.7 Hz, 1H), 4.07-3.94 (m, 2H), 3.89-3.84 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) \delta 146.0, 135.2, 132.3, 130.6, 130.3, 129.8, 128.7, 127.0, 85.1, 67.6, 65.8, 65.6 ppm. HRMS (ESI): Calcd. for C₁₂H₁₂ClN₃NaO₂ (M+Na)⁺ 288.0510, found 288.0517.**

NO2 1-(1,4-dioxan-2-yl)-4-(2-nitrophenyl)-1*H***-1,2,3-triazole (5af). Oil (38.9 mg, 47%), mp: 97-99 °C. ¹H NMR (CDCl₃, 400 MHz) \delta 7.87-7.83 (m, 2H), 7.73 (d,** *J* **= 7.7 Hz, 1H), 7.64 (t,** *J* **= 7.6 Hz, 1H), 7.53-7.51 (m, 1H), 5.84 (dd,** *J* **= 7.1, 2.8 Hz, 1H), 4.34 (dd,** *J* **= 11.8, 7.1 Hz, 1H), 4.12 (dd,** *J* **= 11.8, 2.9 Hz, 1H), 4.05-4.02 (m, 1H), 3.97-3.90 (m, 1H), 3.85-3.81 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) \delta 148.7, 144.0, 134.1, 132.4, 131.3, 129.6, 124.2, 85.1, 67.4, 65.8, 65.4 ppm. HRMS (ESI): Calcd. for C₁₂H₁₂N₄NaO₄ (M+Na)⁺ 299.0751, found 299.0759.**

4 Copies of ¹H NMR and ¹³C NMR spectra

5 Reference

- [1] Z. P. Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945.
- [2] X. J. Quan, Z. H. Ren, Y. Y. Wang, Z. H. Guan, Org. Lett. 2014, 16, 5728.