Supporting Information for

(Salicylaldiminato)Ni(II)-Catalysts for Hydrosilylation of Olefins

Venu Srinivas,^a Yumiko Nakajima,*^a Wataru Ando,^a Kazuhiko Sato,^a Shigeru Shimada*^a

^aNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-

1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail address: <u>s-shimada@aist.go.jp</u> (S. Shimada).

Contents

Experimental Details and Compound Characterization Data	
General considerations	S2–S2
Preparation of Ni(II)-complexes 1a-e : General procedure	.S2–S4
Olefin hydrosilylation using 1a: General procedure	S4–S7
Reaction of 2 with $Et_2SiH_2/1$ -octene in the presence of $1a$	S7–S7
¹ H and ¹³ C NMR spectra of 16	S8
¹ H and ¹³ C NMR spectra of 17	S9
References	S10

Experimental Details and Compound Characterization Data

General considerations.

Unless otherwise noted, all manipulations were performed under a nitrogen atmosphere using Schlenk techniques or a glove box. Toluene, benzene, hexane, and CH₂Cl₂ were purified by a solvent purification system (MBraun SPS-800). Other solvents (THF, benzene- d_6 , toluene- d_8 , and THF- d_8) were dried over sodium benzophenone ketyl and distilled. CD₃CN was dried over CaH₂ and distilled prior to use. All reagents, unless otherwise stated, were purchased from commercial suppliers and used without further purification. ¹H, ¹³C{¹H} and ²⁹Si{¹H} NMR spectra (¹H, 600 MHz; ¹³C, 150 MHz; ²⁹Si, 119 MHz) were recorded using a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signals for ¹H or to tetramethysilane (0.0 ppm) for ¹³C and ²⁹Si. GLC analysis was performed on a Shimadzu GC-14B instrument (FID; CBP-1, 25 m × 0.25 mm). Elemental analyses were carried out on a Thermo Scientific FLASH2000 CHNS analyzer. [Ni(CH₃)₂(tmeda)]^[1] (tmeda = N,N,N',N'tetramethylethylenediamine) and a series of salicylaldimine ligands^[2] were prepared according to the literature procedures.

Synthesis of 1a. To a stirred solution of $[Ni(CH_3)_2(tmeda)]$ (0.100 g, 0.49 mmol) in ether (10 mL) was added a solution of (*E*)-2-(((2,6-diisopropylphenyl)imino)methyl)phenol (137 mg, 0.49 mmol) and pyridine (394 μ L, 4.9 mmol) in ether (10 mL) slowly at -50 °C. The resulting yellow-green solution was slowly warmed to 0 °C over a period of 3-4 h to give a red-colored solution. The solvent was removed under vacuum at 25 °C and the resulting solid was dissolved in ether (5 mL). The solution was filtered with a Celite pad and dried under vacuum to yield **1a** as a red solid (0.211 g, 0.47 mmol, 95%). Complex **1a** was identified by comparing its ¹H and ¹³C{¹H} NMR data with those previously reported.^[4]

Synthesis of 1b. Complex 1b (0.150 g, 0.22 mmol, 86%) was prepared according to the above mentioned procedure using (*E*)-2-((phenylimino)methyl)phenol (0.25 mmol) and [Ni(CH₃)₂(tmeda)] (0.25 mmol). ¹H NMR (C₆D₆, 25 °C) δ –0.62 (s, 3H), 6.23 (br, 2H), 6.49 (t, *J* = 7.2 Hz, 1H), 6.59 (br, 2H), 6.93 (d, *J* = 6.6 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 7.08-7.22 (m, 5H), 7.60 (s, 1H), 8.67 (d, *J* = 1.0 Hz, 2H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ –6.7, 113.8, 120.4, 122.9, 123.2, 124.7, 125.4, 128.6, 134.4x2, 135.6, 151.9, 155.9, 166.2, 168.1; Anal. Calcd. for C₁₉H₁₈N₂NiO: C, 65.38; H, 5.20; N, 8.03. Found: C, 65.31; H, 5.35; N, 7.93.

Synthesis of 1c. Complex 1c (0.152 g, 0.21 mmol, 91%) was prepared according to the above mentioned procedure using (*E*)-2-(((3,3",5,5"-tetrakis(trifluoromethyl)-[1,1':3',1"-terphenyl]-2'-yl)imino)methyl)phenol (0.23 mmol) and [Ni(CH₃)₂(tmeda)] (0.23 mmol). ¹H NMR (C₆D₆, 25 °C) δ –0.93 (s, 3H), 6.17 (br, 2H), 6.24 (t, *J* = 6.9 Hz, 1H), 6.46 (t, *J* = 6.6 Hz, 1H), 6.55 (d, *J* = 7.2, 2.1 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 1H), 6.85 (s, 1H), 6.92-6.94 (m, 5H), 7.77 (s, 1H), 8.22-8.27 (m, 6H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ –7.0, 113.4, 120.1, 122.5, 122.8, 124.4, 125.0, 127.5, 127.7, 127.9, 128.0, 128.2, 134.0, 134.1, 135.2, 151.6, 155.5, 165.8, 167.8; Anal. Calcd. for C₃₅H₂₂F₁₂N₂NiO: C, 54.37; H, 2.87; N, 3.62. Found: C, 53.68; H, 2.88; N, 3.64.

Synthesis of 1d. Complex 1d (0.106 g, 0.23 mmol, 92%) was prepared according to the above mentioned procedure using (*E*)-2-(((2,6-diisopropylphenyl)imino)methyl)phenol (0.25 mmol), DMAP (0.25 mmol) and [Ni(CH₃)₂(tmeda)] (0.25 mmol). ¹H NMR (C₆D₆, 25 °C) δ –0.57 (s, 3H), 1.09 (d, *J* = 6.6 Hz, 6H), 1.57 (d, *J* = 6.6 Hz, 6H), 1.96 (s, 6H), 4.34 (septet, *J* = 6.9 Hz, 2H), 5.63 (t, *J* = 6.0 Hz, 2H), 6.49 (t, *J* = 7.2 Hz, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 7.10-7.24 (m, 5H), 7.62 (s, 1H), 8.45 (d, *J* = 6.6 Hz, 2H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ –8.2, 23.3, 25.0, 28.6, 38.1, 106.5, 113.5, 120.4, 122.9, 123.6, 126.3, 134.0, 134.1, 141.3, 150.8, 150.9, 153.7, 166.0, 168.5; Anal. Calcd. for C₂₇H₃₅N₃NiO.C₆H₆; C, 71.48; H, 7.45; N, 7.58. Found: C, 71.83; H, 7.17; N, 7.36.

Synthesis of 1e. Complex 1e (0.081 g, 0.11 mmol, 94%) was prepared by using (*E*)-2-(((2,6-diisopropylphenyl)imino)methyl)-4,6-diiodophenol (0.12 mmol) and $[Ni(CH_3)_2(tmeda)]$ (0.12 mmol)]. The ¹H and ¹³C{¹H} NMR data are in agreement with the reported one.^[3]

Catalytic hydrosilylations. A typical procedure (enrty 1 in Table 1) is as follows. To a stirred solution of precatalyst **1a** (1.0 mg, 0.0025 mmol) in CH₃CN (2 mL) was added Et₂SiH₂ (64 μ L, 0.5 mmol) and 1-octene (94 μ L, 0.6 mmol) at room temperature. The solution was stirred at room temperature, and the progress of the reaction was monitored by GLC. After completion of the reaction, mesitylene (60 mg, 0.50 mmol) was added as an internal standard to the reaction mixture. The GLC analysis of the resulting solution revealed the formation of Et₂(*n*Oct)SiH (**2**, 0.47 mmol, 93%) and Et₂(*n*Oct)₂Si (**3**, 0.02 mmol, 4%). The solution was concentrated under vacuum, and the residue was purified by gel permeation chromatography (GPC) using toluene as an eluent to give **2** (88 mg, 0.44 mmol, 88%) and **3** (0.5 mg, 0.015 mmol, 3%). The final products were characterized by ¹H, ¹³C {¹H} and ²⁹Si {¹H} NMR.

Et₂(*n*Oct)SiH (2): ¹H NMR (C₆D₆, 25 °C) δ 0.60 (m, 6H), 0.92 (t, *J* = 6.0 Hz, 3H), 1.02 (t, *J* = 8.0 Hz, 6H), 1.29-1.41 (12H), 3.97 (m, 1H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 3.2, 8.5, 11.0, 14.3, 23.0, 25.1, 29.7, 31.9, 32.3, 33.7; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ -1.63; Anal. Calcd. for C₁₂H₂₈Si: C, 71.91; H, 14.08. Found: C, 71.76; H, 14.03.

Et₂(*n*Oct)₂Si (3): ¹H NMR (C₆D₆, 25 °C) δ 0.57-0.62 (m, 8H), 0.92 (t, *J* = 7.2 Hz, 6H), 1.04 (t, *J* = 8.1 Hz, 6H), 1.23-1.40 (24H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 4.2, 7.9, 12.2, 14.4, 23.1, 24.4, 29.7, 29.8, 32.3, 34.4; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ 5.82; Anal. Calcd. for C₂₀H₄₄Si: C, 76.83; H, 14.19. Found: C, 76.97; H, 14.49.

Ph₂(*n***Oct)SiH (4)**: Compound **4** was identified by comparison of the ¹H and ¹³C{¹H} NMR data with those previously reported.^{[5] 29}Si{¹H} NMR (C₆D₆, 25 °C) δ –13.14.

Ph₂(*n***Oct)₂Si (5): ¹H NMR (C₆D₆, 25 °C) \delta 0.88 (t,** *J* **= 7.2 Hz, 6H), 1.13-1.16 (m, 4H), 1.22-1.28 (m, 16H), 1.33-1.36 (m, 4H), 1.45-1.50 (m, 4H), 7.19-7.23 (m, 6H), 7.58-7.59 (m, 4H); ¹³C{¹H} NMR (C₆D₆, 25 °C) \delta 12.7, 14.0, 22.7, 23.9, 29.2, 29.3, 31.9, 33.8, 127.8, 129.1, 135.0, 136.7; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) \delta –6.09; Anal. Calcd. for C₂₈H₄₄Si: C, 82.28; H, 10.85. Found: C, 82.10; H, 11.15.**

(*n*Hex)₂(*n*Oct)SiH (6): ¹H NMR (C₆D₆, 25 °C) δ 0.66-0.70 (m, 6H), 0.89-0.92 (m, 9H), 1.27-1.46 (m, 28H), 4.05-4.08 (m, 1H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 11.5, 14.0 x 2, 22.7, 22.8, 24.8, 24.9, 29.4 x 2 , 31.6, 32.0, 33.2, 33.5; ²⁹Si{1H} NMR (C₆D₆, 25 °C) δ –6.07; Anal. Calcd. for C₂₀H₄₄Si: C, 76.83; H, 14.19. Found: C, 77.34; H, 14.52;

 $(n\text{Hex})_2(n\text{Oct})_2\text{Si}$ (7): ¹H NMR (C₆D₆, 25 °C) δ 0.65-0.69 (m, 8H), 0.90-0.93 (m, 12H), 1.29-1.46 (m, 40H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 12.7×2, 14.0, 14.0, 22.7, 22.8, 24.1, 24.2, 29.4, 31.7, 32.0, 33.8, 34.1; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ 3.40; Anal. Calcd. for C₂₈H₆₀Si: C, 79.16; H, 14.23. Found: C, 79.77; H, 14.51.

Ph(*n***Oct**)**SiH**₂ (8): Compound 8 was identified by comparison of the ¹H and ¹³C{¹H} NMR data with those previously reported.^{[6] 29}Si{1H} NMR (C₆D₆, 25 °C) δ –30.50.

(*n*Oct)₂SiH₂ (9): Compound 9 was identified by comparison of the partial ¹H and ¹³C{¹H} NMR data with those previously reported.^[7] Full ¹H and ¹³C NMR spectral data have been collected in this study. ¹H NMR (C₆D₆, 25 °C) δ 0.65-0.68 (m, 4H), 0.90 (t, *J* = 7.2 Hz, 6H), 1.26-1.34 (m, 20H), 1.40-1.44 (m, 4H), 3.98 (quintet, *J* = 3.6 Hz, 2H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 9.2, 14.0, 22.7, 25.6, 29.3, 29.4, 32.0, 33.0; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ –28.17.

 $\begin{array}{c} \mathsf{Et}, \mathsf{H} \\ \mathsf{Si} \\ \mathsf{Et} \end{array} \qquad \begin{array}{c} 10: \text{ Compound 10 was identified by comparison of the } {}^{1}\text{H and } {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} \\ \text{data with those previously reported.} {}^{[8] 29}\text{Si}\{{}^{1}\text{H}\} \text{ NMR} (C_6D_6, 25 \ ^{\circ}\text{C}) \ \delta \ 1.25. \end{array}$

Ph, H Ph, H Ph 11: Compound 11 was identified by comparison of the ¹H and ¹³C {¹H} NMR data with those previously reported.^{[8] 29}Si {¹H} NMR (C₆D₆, 25 °C) δ –10.28. Et, H Et, H Et, Ph data with those previously reported.^{[9] 29}Si {¹H} NMR (C₆D₆, 25 °C) δ –1.90. Et, H Et, Ph 12b: ¹H NMR (C₆D₆, 25 °C) δ 0.40-0.56 (m, 4H), 0.85 (t, *J* = 7.8 Hz, 3H), 0.91 (t, Et, ^Y H *J* = 7.8 Hz, 3H), 1.33 (d, *J* = 7.8 Hz, 3H), 2.19-2.23 (m, 1H), 3.85-3.88 (m, 1H), 7.01-7.06 (m, 3H), 7.16-7.18 (m, 2H); ¹³C {¹H} NMR (C₆D₆, 25 °C) δ 1.9, 2.0, 8.4 x 2, 16.3, 26.1, 125.0, 127.4, 128.3, 128.6, 145.9; ²⁹Si {¹H} NMR (C₆D₆, 25 °C) δ 5.13; Anal. Calcd. for C₁₂H₂₀Si: C, 74.92; H, 10.48. Found: C, 74.68; H, 10.52.

Ph, H Ph, H Ph Ph

Et H **I**4: ¹H NMR (C₆D₆, 25 °C) δ 0.53-0.58 (m, 4H), 0.97 (t, *J* = 7.8 Hz, 6H), 1.54- **Si** Si (m, 5H), 1.73 (quintet, *J* = 1.2 Hz, 3H), 3.96 (septet, *J* = 3.0 Hz, 1H), 5.14-5.19 (m, 1H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 3.2, 8.0, 13.6, 16.8, 25.6, 116.4, 128.0, 128.9, 133.1; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ -3.58; Anal. Calcd. for C₉H₂₀Si: C, 69.14; H, 12.89. Found: C, 68.99; H, 12.83.

Ph, H N Ph' 17: ¹H NMR (C₆D₆, 25 °C) δ 1.11-1.16 (m, 2H), 1.61 (quintet, J = 7.6 Hz, 2H), 2.16 (s, 6H), 2.28 (t, J = 7.3 Hz, 2H), 4.86 (t, J = 3.7 Hz, 1H), 7.32-7.38 (m, 6H), 7.53-7.55 (m, 4H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 9.7, 22.6, 45.1, 62.1, 128.0, 129.4, 134.8, 135.1; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ –13.00. Elemental analysis was not successful due to high unstability of 17 under air. Full ¹H and ¹³C NMR spectra were shown on page S9.

Et H 18: ¹H NMR (C₆D₆, 25 °C) δ 0.42-0.46 (m, 2H), 0.50-0.54 (m, 4H), 0.96 Et SPh (t, J = 7.8 Hz, 6H), 1.33-1.38 (m, 2H), 1.54-1.59 (m, 2H), 2.69 (t, J = 7.2 Hz, 2H), 3.86-3.87 (m, 1H), 6.93 (td, J = 7.2, 1.2 Hz, 1H), 7.03 (t, J = 7.8 Hz, 2H), 7.29 (d, J = 0.6 Hz, 1H), 7.31 (d, J = 1.2 Hz, 1H); ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 2.7, 8.1, 10.1, 23.7, 32.6, 32.9, 125.4, 128.7, 128.9, 137.5; ²⁹Si{¹H} NMR (C₆D₆, 25 °C) δ -1.75; Anal. Calcd. for C₁₄H₂₄SSi: C, 66.60; H, 9.58; S, 12.70. Found: C, 66.85; H, 9.73; S, 12.71.

Formation of 3 via octyl group redistribution in 2. To a toluene solution (2 mL) of 1a (0.5 mg, 0.001 mmol) were successively added Et_2SiH_2 (1.0 mg, 0.01 mmol) and $Et_2(nOct)SiH$ (2, 46.7 mg, 0.23 mmol). After the mixture was stirred at 25 °C for 24 h, formation of $Et_2(nOct)_2Si$ (3, 0.02 mmol, 15%) was confirmed by GLC analysis. It was also confirmed that the reactions of 1a with $Et_2(nOct)SiH$ (2) and/or 1-octene resulted in the full recovery of the starting materials.

¹H and ¹³C NMR spectra of 16 (in CDCl₃ at room temperature)

¹H and ¹³C NMR spectra of 17 (in C₆D₆ at room temperature)

References:

- E. F. Connor, T. R. Younkin, J. I. Henderson, A. W. Waltman and R. H. Grubbs, *Chem. Commun.*, 2003, 2272–2273.
- [2] H. Fukuda, K. Amimoto, H. Koyama and T. Kawato, Org. Biomol. Chem., 2003, 1, 1578–1583.
- [3] F. M. Bauers and S. Mecking, *Macromolecules*, 2001, **34**, 1165-1171.
- [4] Y. Li, D. Song and Y. Li, *Faming Zhuanli Shenqing*, CN102351908A, 2012, [CAN 156:285016].
- [5] K. Kamata, A. Suzuki, Y. Nakai and H. Nakazawa, Organometallics, 2012, 31, 3825–3828.
- [6] Z. Mo, Y. Liu and L. Deng, Angew. Chem. Int. Ed., 2013, 52, 10845–10849.
- [7] J. Radell and P. D. Hun, J. Am. Chem. Soc., 1958, 80, 2683–2685.
- [8] B. Adrjan and T. Szymańska-Buzar, J. Organomet. Chem., 2008, 693, 2163–2170.
- [9] M. D. Greenhalgh, D. J. Frank and S. P. Thomas, *Adv. Synth. Catal.*, 2014, **356**, 584–590.
- [10] Y. Ura, G. Gao, F. Bao, M. Ogasawara and T. Takahashi, *Organometallics*, 2004, 23, 4804-4806.
- [11] J. Robertson, M. J. Hall, P. M. Stafford and S. P. Green, *Org. Biomol. Chem.*, 2003, 1, 3758–3767.