Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Nickel and Cobalt phosphide as effective catalysts for oxygen-removal of dibenzofuran:

Role of contact time, hydrogen pressure and hydrogen/feed molar ratio A. Infantes Molina, E. Gralberg, J.A. Cecilia, Elisabetta Finocchio, E. Rodríguez-

Castellón

In order to determine if internal diffusion is limiting the reaction the Weisz - Prater criterion can be used. It uses measured values of the rate of reaction to determine if the reaction suffers from problem of internal diffusion as follows:

$$C_{WP} = \frac{Actual \ reaction \ rate}{A \ diffusion \ rate} = \frac{-r_{A(obs)}\rho_c R^2}{D_e C_{AS}}$$
(1)

Internal mass transfer effect can be neglected when the value of C_{WP} is less than 1. The parameters used for the criterion are represented in Table 5.

R	Catalyst particle radius (cm)	0.05					
ρ_c	Solid catalyst density (g×cm ⁻³)	0.25					
C _{AS}	Gas concentration at the catalyst surface (mol×cm ⁻³)	P 30 bar H ₂ /DBF 69 9.52×10^{-6}	P 15 bar H ₂ /DBF 69 4.76×10 ⁻⁶	P 1 bar H ₂ /DBF 69 3.17×10 ⁻⁷	P 30 H ₂ /DH 34 1.89×	bar BF	P 30 bar H ₂ /DBF 139 4.76×10 ⁻⁶
De	Effective diffusivity	Ni ₂ P				CoP	
	$(\mathrm{cm}^2 \times \mathrm{s}^{-1})$	0.014				0.015	5

Table S1. Experimental Parameters to calculate the C_{WP} parameter

The observed rates $-r'_A$ were calculated for each reaction carried out with equation (2):

$$-\frac{\ln(1-X)}{\frac{W}{F}} \quad (mol \, s^{-1}g^{-1})$$

$$-\mathbf{r'}_{A=} \qquad (2)$$

 F_{DBF} is obtained by converting the volumetric flow rate (\dot{V}) into mass flow rate (\dot{m}) and then divide the mass flow rate with the molar mass of DBF:

$$\dot{m}(g \min^{-1}) = \rho \times \dot{V} \tag{3}$$

$$F_{DBF}(\text{mol min}^{-1}) = \dot{m} / MW$$
(4)

The parameter C_{AS} is the gas concentration at the catalyst surface expressed in mol×cm⁻³. The concentration of DBF at the surface is assumed to be equal to its bulk concentration:

$$C_{AS} = C_0 = N_{DBF}/V = P_{DBF}/RT$$
(5)

Example of calculation of C_{AS} (P 30 bar; H_2 /DBF 69)

$$(30 atm)(0.0143)/(\frac{82.06atm \times cm^{3}}{g \text{ mole} \times K}) (548.15) = 9.52 \times 10^{-6} \text{ mol} \times cm^{-3}$$

The Effective diffusivity D_e in the criterion will in this case be substituted by Knudsen diffusion because the pore diameters (D_p) are between 16-18 nm and pore diffusion will therefore be dominated by Knudsen diffusion (D_{Kn}) and is calculated by fomula 17:

$$D_{Kn} = \frac{Vave \times Dp}{3}$$
(6)

Where V_{ave} is the average velocity for the DBF molecules. V_{ave} is calculated by the formula:

$$V_{ave} = [8k_B T / \pi m]^{0.5}$$
(7)

Where k_B is Boltzmann's constant and m is the mass of molecular species. *Example of calculation of* V_{ave} :

$$V_{ave} = \left[\frac{8(1.38 \times 10^{-16} erg \times K^{-1})(548.15K)}{\pi (168.19amu)(1.66 \times 10^{-24}g \times amu^{-1})}\right]_{0.5}^{0.5} = 2.62 \times 10^4 \,\mathrm{cm \ s^{-1}}$$

Finally D_{Kn} can be found applying formula 17. Example of calculation of D_{Kn} (Ni₂P catalyst):

$$D_{Kn} = \frac{2.62 \times 104 \ cm \ s - 1 \times (1.61 \times 10^{-6} \ cm)}{3} = 0.014 \ cm^2 \ s^{-1}$$

The observed rates $-r'_A$ for all of the reactions and corresponding Weisz –Prater Criterion are presented in the results[24][25].

Table S2 and S3 compile the observed reaction rates and corresponding Weisz-Prater criterion for Ni_2P and CoP catalyst are listed.

Pressure Bar	H ₂ /DBF ratio	Contact time / s	$-r_{A(obs)}$ Observed reaction rate / mol g ⁻¹ s ⁻¹	C _{WP} Weisz-Prater criterion
30	69.2	1.8	5.55 x10 ⁻⁷	0.003
30	69.2	2.4	8.78 x10 ⁻⁷	0.004
30	69.2	3.6	2.20 x10 ⁻⁶	0.010
30	69.2	6.0	2.77 x10 ⁻⁶	0.013
30	69.2	12	1.41 x10 ⁻⁶	0.007
1	69.2	6	1.07 x10 ⁻⁷	0.015
15	69.2	6	2.62 x10 ⁻⁶	0.024
30	34.3	6	7.79 x10 ⁻⁶	0.018
30	139.0	6	2.0 x10 ⁻⁶	0.019

Table S2. The observed reaction rates and corresponding Weisz-Prater criterion for Ni₂P/SiO2

Table S3. The observed reaction rates and corresponding Weisz-Prater criterion for CoP/SiO2

Pressure	H ₂ /DBF	Contact	$-r_{A(obs)}$	C _{WP}
Bar	ratio	time	Observed reaction rate	Weisz-Prater
		/ S	/ mol g ⁻¹ s ⁻¹	criterion
30	69.2	1.8	1.22 x10 ⁻⁶	0.005
30	69.2	2.4	8.33 x10 ⁻⁷	0.004
30	69.2	3.6	5.14 x10 ⁻⁷	0.002
30	69.2	6.0	7.99 x10 ⁻⁷	0.003
30	69.2	12	1.16 x10 ⁻⁶	0.005
1	69.2	6	5.07 x10 ⁻⁸	0.007
15	69.2	6	9.37 x10 ⁻⁷	0.008
30	34.3	6	1.10 x10 ⁻⁶	0.002
30	139.0	6	1.07x10 ⁻⁶	0.009

As previous described the internal mass transfer effects can be neglected when the value of C_{WP} is less than 1. All the values of C_{WP} are in the order of 10^{-2} - 10^{-3} . This indicates that internal mass transfer effects can be neglected at the conditions employed for reactivity study in this project.

Figure S1. P 2p core level spectra for Ni₂P (A) and CoP (B) catalysts