Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supplementary Information for

Yttrium oxide modified Cu/ZnO/Al₂O₃ catalysts via hydrotalcite-like

precursors for the CO₂ hydrogenation reaction to methanol

Peng Gao ^{a,b}, Liangshu Zhong ^b, Lina Zhang ^c, Hui Wang ^{a,b}, Ning Zhao ^c,

Wei Wei ^{a,b,*}, Yuhan Sun ^{b,c,*}

Fig. S1 In situ XRD patterns collected during the reduction process of CHT-Y0 in 5%
H₂/He from 298 to 673 K. (●) CuO; (◆)Cu; (■) ZnO.

Fig. S2 *In situ* XRD patterns collected during the reduction process of CHT-Y0.1 in 5% H_2 /He from 298 to 673 K. (\bullet) CuO; (\blacklozenge)Cu.

Fig. S3 In situ XRD patterns collected during the reduction process of CHT-Y0.5 in 5%
H₂/He from 298 to 673 K. (●) CuO; (◆)Cu; (■) ZnO.

Fig. S4 Phase evolution of CHT-Y0 sample recorded by *in situ* XRD during the heating of CHT-Y0.5 in 5% H₂/He from 448 to 573 K at a heating rate of 5 K min⁻¹.
(●) CuO; (▽) Cu₂O; (◆)Cu.

Fig. S5 Phase evolution of CHT-Y0.1 sample recorded by *in situ* XRD during the heating of CHT-Y0.5 in 5% H_2 /He from 448 to 573 K at a heating rate of 5 K min⁻¹.

(ullet) CuO; (∇) Cu₂O; (\diamondsuit) Cu.

Fig. S6 Phase evolution of CHT-Y0.5 sample recorded by *in situ* XRD during the heating of CHT-Y0.5 in 5% H₂/He from 448 to 573 K at a heating rate of 5 K min⁻¹.
(●) CuO; (▽) Cu₂O; (◆)Cu; (■) ZnO.

Fig. S7 TEM images of calcined (a) CHT-Y0, (b) CHT-Y0.1 and (c) CHT-Y0.5 samples at 773 K for 4 h.

Fig. S8 TEM images of spent (a) CHT-Y0, (b) CHT-Y0.1 and (c) CHT-Y0.5 catalysts after 500 h.

Fig. S9 XPS spectra of Y 3d core-level for the reduced CHT-Yx catalysts.

Fig. S10 Effect of reaction pressure on the yield of methanol over (circles) CHT-Y0, (triangles) CHT-Y0.1 and (rectangles) CHT-Y0.5 catalysts. Reaction conditions: T = 503 K, GHSV = 10,000 mL gcat⁻¹ h⁻¹, H₂/CO₂/N₂ = 73/24/3 (molar ratio).