Supporting Information for

Rational design of ethanol steam reforming catalyst based on analysis of Ni / La₂O₃ metal-support interactions

Jyong-Yue Liu^a, Wei-Nien Su^b, John Rick^a, Sheng-Chiang Yang^a, Chun-Jern Pan^a, Jyh-Fu Lee^c, Jin-

Ming Chen^c and Bing-Joe Hwang^{a,c,*}

^aDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan

^bGraduate Institute of Applied Science and Technology, National Taiwan University of Science and

Technology, Taipei 10617, Taiwan

^cNational Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.

Figure S1 The XRD pattern of Ni/La₂O₃ catalyst.

Figure S2 The XRD pattern of Ni/SiO₂ catalyst.

Figure S3 The reaction product distribution of : (a) Ni/SiO₂ and (b) Ni/La₂O₃ catalysts as a function of reaction time at 395° C. Each catalyst was exposed to a well mixture of CO (29.5 torr), H₂ (295 torr) ,and H₂O (334 torr).

Figure S4 XRD patterns of (a) Ni/La₂O₃ used catalyst and (b) La₂O₂CO₃ JCPDS reference.

Figure S5 TGA of (a) Ni/SiO₂, and (b) Ni/La₂O₃ used catalysts.

Catalyst	H ₂ uptake ¹	Grain size ²	
	μ mole/g	(nm)	
	30°C		
Ni/SiO ₂	552.8	6.3	
Ni/La ₂ O ₃	54.4.	6.6	

Table S1 the H₂ uptake and grain size of various catalysts

¹: Calculated based on the H₂ pulse experiment.

²: Calculated based on the XRD results

Table S2 Carbon balance for the Ni/La₂O₃ catalyst with various reaction temperatures

Temp (℃)	300	325	360	395	435	465	500
Input C balance (10 ⁻⁷ mol)	2.49	2.49	2.49	2.49	2.49	2.49	2.49
Output C balance (10 ⁻⁷ mol)	2.49	2.49	2.41	2.45	2.30	2.25	2.36

Figure S6 ESR reaction of (a) Ni/La₂O₃ and (b) Ni/SiO₂ catalysts with time on stream (h). Reaction temperature: 395° C. Condition: WHSV = 44.8 h⁻¹ and H₂O/EtOH = 4