# Aryl-substituted organomolybdenum (II) complexes for the catalytic epoxidation of olefins

Lilian Graser<sup>a</sup><sup>‡</sup>, Robert M. Reich<sup>a</sup><sup>‡</sup>, Mirza Cokoja<sup>b</sup>, Alexander Pöthig<sup>b</sup>, Fritz E. Kühn<sup>a,c\*</sup>

- <sup>a</sup> Molecular Catalysis, Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching bei München, Germany. Tel: +49 89 289 13096; Fax: +49 89 289 13473. Corresponding author: E-mail: fritz.kuehn@ch.tum.de
- <sup>b</sup> Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching bei München, Germany.
- Catalysis Research Center, Technische Universität München, Ernst Otto Fischer-Str. 1, D-85747 Garching bei München, Germany
- <sup>d</sup> Chair of Inorganic Chemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München,
   Lichtenbergstr. 4, D-85747 Garching bei München, Germany
- <sup>‡</sup> These authors contributed equally to this work.

## **Supporting Information**

#### **Table of Contents**

| <b>S</b> 1 |
|------------|
| <b>S</b> 1 |
| S2         |
| S4         |
|            |

#### S2. X-Ray single crystallography

| Table S2 Crystallographic data for compounds 1 and 2 | S6 |
|------------------------------------------------------|----|
|                                                      |    |

## **S1.** Computational results

 Table S1 Summary of computational results.

|                                                  | Compounds |          |
|--------------------------------------------------|-----------|----------|
|                                                  | 1         | 2        |
| Mulliken charge on Mo                            | 2.583     | 2.718    |
| HOMO-LUMO-gap [eV]                               | 3.9701    | 4.1802   |
| Sum of electronic and thermal Enthalpies [eV]    | -23743.8  | -37246.2 |
| Sum of electronic and thermal Free Energies [eV] | -23745.7  | -37248.4 |



**Figure S1** Comparison of the HOMOs (left) and LUMOs (right) of the compounds  $[CpMo(CO)_3R]$  with R = Bz (1) (above), BzF (2) (below) in gas phase (B3LYP/6-31+G\*\*(d,p) level of theory).

## S1.1 Calculated coordinates for [CpMo(CO)<sub>3</sub>Bz] (1)

| С                 | -3.32830310 | -0.61772787       | -0.44940582                  |
|-------------------|-------------|-------------------|------------------------------|
| Н                 | -3.87316639 | -1.32223187       | 0.16393809                   |
| С                 | -3.29337484 | 0.80379367        | -0.27100760                  |
| С                 | -2.55982414 | -0.93452751       | -1.60734317                  |
| Н                 | -3.80837309 | 1.36086774        | 0.49953775                   |
| С                 | -2.50104095 | 1.35790345        | -1.31903640                  |
| Н                 | -2.40723350 | -1.92221784       | -2.02100033                  |
| С                 | -2.05547511 | 0.28429409        | -2.14116870                  |
| Н                 | -2.29766726 | 2.40823795        | -1.47809835                  |
| Н                 | -1.43037761 | 0.37806069        | -3.01869193                  |
| 0                 | 0.46531881  | 2.43368564        | 1.30281052                   |
| 0                 | -1.72857854 | -0.43720551       | 3.14302039                   |
| 0                 | 0.42756025  | -2.72575959       | 0.57217745                   |
| С                 | -0.08917305 | -1.70174290       | 0.40946113                   |
| С                 | -1.48502235 | -0.28240689       | 2.02095400                   |
| С                 | -0.06418230 | 1.50241619        | 0.86201360                   |
| Мо                | -1.09902111 | -0.01263063       | 0.07874939                   |
| С                 | 0.91073071  | 0.15388922        | -1.28061737                  |
| Н                 | 0.72694515  | -0.65487938       | -1.98902554                  |
| Н                 | 0.72298973  | 1.11062314        | -1.76951685                  |
| С                 | 2.30016265  | 0.09273520        | -0.74962499                  |
| С                 | 2.99760578  | -1.12877619       | -0.66276828                  |
| С                 | 2.99250149  | 1.26306650        | -0.37979893                  |
| С                 | 4.31487179  | -1.18121094       | -0.20594553                  |
| Н                 | 2.50395117  | -2.04848191       | -0.96206241                  |
| С                 | 4.30996607  | 1.21314147        | 0.07671025                   |
| Н                 | 2.49427211  | 2.22495048        | -0.45610613                  |
| С                 | 4.97853656  | -0.01062289       | 0.17235049                   |
| Н                 | 4.82495296  | -2.13904184       | -0.15067862                  |
| Н                 | 4.81617202  | 2.13378279        | 0.35396793                   |
| Н                 | 6.00414196  | -0.05029554       | 0.52755905                   |
| Sum of electronic | and thermal | Enthalpies = $-8$ | 72.6 Hartree (-23743.8 eV)   |
| Sum of electronic | and thermal | Free Energies =   | -872.6 Hartree (-23745.7 eV) |

S2

## S1.2 Calculated coordinates for [CpMo(CO)<sub>3</sub>BzF<sub>5</sub>] (2)

| С                 | 4.19444272  | -0.33279115    | -0.16316270     |               |
|-------------------|-------------|----------------|-----------------|---------------|
| Н                 | 4.92167152  | 0.33225991     | 0.28249353      |               |
| С                 | 3.61634100  | -1.48615009    | 0.45930773      |               |
| С                 | 3.68581592  | -0.24266085    | -1.49078695     |               |
| Н                 | 3.83748258  | -1.85049295    | 1.45302214      |               |
| С                 | 2.73776664  | -2.09714293    | -0.48527683     |               |
| Н                 | 3.94401159  | 0.51025531     | -2.22317287     |               |
| С                 | 2.79181929  | -1.32841922    | -1.68622699     |               |
| Н                 | 2.16428402  | -3.00148399    | -0.33379132     |               |
| Н                 | 2.24436085  | -1.53457372    | -2.59575516     |               |
| 0                 | -0.28851517 | -1.01826234    | 2.12885260      |               |
| 0                 | 2.60183766  | 1.67264155     | 2.70600957      |               |
| 0                 | 1.31872523  | 3.01131126     | -0.87846148     |               |
| С                 | 1.45412991  | 1.93015115     | -0.49444071     |               |
| С                 | 2.32455471  | 1.08569233     | 1.74817176      |               |
| С                 | 0.47240603  | -0.59884977    | 1.36453543      |               |
| Мо                | 1.86919830  | 0.05242664     | 0.09367594      |               |
| С                 | -0.07530098 | -0.14846801    | -1.31742886     |               |
| Н                 | 0.04888421  | 0.59292370     | -2.10517149     |               |
| Н                 | 0.11289116  | -1.13937073    | -1.72384415     |               |
| С                 | -1.46179267 | -0.10395708    | -0.78699147     |               |
| С                 | -2.18675211 | 1.08721409     | -0.64554984     |               |
| С                 | -2.15182114 | -1.27008109    | -0.42590855     |               |
| С                 | -3.49436830 | 1.12785175     | -0.17221873     |               |
| С                 | -3.45853258 | -1.26542914    | 0.04995933      |               |
| С                 | -4.13726114 | -0.05656227    | 0.18131009      |               |
| F                 | -1.60626992 | 2.25625944     | -0.98863181     |               |
| F                 | -4.14193081 | 2.29872112     | -0.05980183     |               |
| F                 | -5.39732113 | -0.03289021    | 0.64025773      |               |
| F                 | -4.06825700 | -2.41531875    | 0.38026045      |               |
| F                 | -1.53121893 | -2.46669899    | -0.54443253     |               |
| Sum of electronic | and thermal | Enthalpies = - | -1368.8 Hartree | (-37246.2 eV) |

Sum of electronic and thermal Free Energies = -1368.9 Hartree (-37248.4 eV)

### S2. X-Ray single crystallography

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (APEX II,  $\kappa$ -CCD), a fine-focused sealed tube with MoK<sub> $\Box$ </sub> radiation ( $\lambda = 0.71073$  Å) and a graphite monochromator, by using the APEX2 software package. [1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a glass fiber and transferred to the diffractometer. Crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps [3], and were refined against all data using the APEX 2 software [1] in conjunction with SHELXL-97 [5] and SHELXLE [6]. Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of 0.98 Å and  $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$ . Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and  $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$ . If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing  $\Sigma w(F_o^2 - F_c^2)^2$  with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [7]

#### References:

- APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3] Sheldrick, G. M. "SHELXS-97", Program for Crystal Structure Solution, Göttingen, (1997).
- [4] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1997).
- [6] Huebschle, C. B., Sheldrick, G. M. & Dittrich, B. "SHELXLE", J. Appl. Cryst. 2011, 44, 1281-1284.
- [7] Spek, A. L. "**PLATON**", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).

|                                          | 1                        | 2                       |
|------------------------------------------|--------------------------|-------------------------|
| CCDC                                     | 1055255                  | 1055256                 |
| formula                                  | $C_{15}H_{12}MoO_3$      | $C_{15}H_7F_5MoO_3\\$   |
| fw                                       | 336.19                   | 426.15                  |
| colour/habit                             | yellow fragment          | yellow fragment         |
| cryst dimensions (mm <sup>3</sup> )      | 0.07x0.13x0.17           | 0.09x0.14x0.36          |
| cryst syst                               | orthorhombic             | monoclinic              |
| spacegroup                               | Pbca                     | $P 2_1/n$ (No. 14);     |
| <i>a</i> , Å                             | 16.6109(4)               | 8.1106(2)               |
| b, Å                                     | 8.7885(2)                | 14.7261(4)              |
| <i>c</i> , Å                             | 17.8015                  | 12.4891(3)              |
| $\alpha$ , deg                           | 90                       | 90                      |
| $\beta$ , deg                            | 90                       | 100.409(1)              |
| γ, deg                                   | 90                       | 90                      |
| <i>V</i> , Å <sup>3</sup>                | 2598.75(11)              | 1467.12(6)              |
| Ζ                                        | 8                        | 4                       |
| Т, К                                     | 123                      | 123                     |
| $D_{\text{calcd}}$ , g cm <sup>-3</sup>  | 1.719                    | 1.929                   |
| $\mu$ , mm <sup>-1</sup>                 | 1.009                    | 0.963                   |
| F(000)                                   | 1344.0                   | 832.0                   |
| $\theta$ range, deg                      | 2.29-25.35               | 2.77-25.38              |
| Index ranges $(h, k, l)$                 | $\pm 20, \pm 10, \pm 21$ | $\pm 9, \pm 17, \pm 15$ |
| no. of rflns collected                   | 74161                    | 39156                   |
| no. of indep rflns/ $R_{\rm int}$        | 2382/0.0368              | 2689/0.0218             |
| no. of obsd rflns ( $I \ge 2\sigma(I)$ ) | 2194/2382/0.0368         | 2466/2689/0.0218        |
| no. of data/restraints/params            | 2382/0/220               | 2689/0/217              |
| R1/wR2 ( $I > 2\sigma(I)$ ) <sup>a</sup> | 0.0213/0.0237            | 0.0153/0.0179           |
| R1/wR2 (all data) <sup>a</sup>           | 0.0559/0.0581            | 0.0358/0.0369           |
| GOF (on $F^2$ ) <sup>a</sup>             | 1.051                    | 1.083                   |
| Largest diff peak and hole (e $Å^{-3}$ ) | 1.59/-0.39               | 0.27/-0.25              |

 Table S2.Crystallographic data for compounds 1 and 2.

<sup>a</sup>  $\overline{\text{R1} = \sum(||F_o| - |F_c||)/\sum|F_o|}; \text{ wR2} = \{\sum [w(F_o^2 - F_c^2)^2]/\sum [w(F_o^2)^2]\}^{1/2}; \text{ GOF} = \{\sum [w(F_o^2 - F_c^2)^2]/(n-p)^{1/2}\}^{1/2}\}^{1/2}$