## **Electronic Supporting Information**

## CdS-Decorated Triptycene-Based Polymer: Durable Photocatalysts

for Hydrogen Production Under Visible-Light Irradiation

Qian Liang, $\ddagger^{ab}$  Guiyuan Jiang, $\ddagger^{b}$  Zhen Zhao, $\ast^{b}$  Zhongyu Li, $a^{a}$  and Mark J. MacLachlan $\ast^{c}$ 

<sup>a</sup>Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.

<sup>b</sup>State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18Fuxue Road, Chang Ping, Beijing 102249, PR China.

<sup>c</sup>Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.

*‡* These authors contributed equally to this work.



**Figure S1.** <sup>13</sup>C CP/MAS NMR spectra of NTP, CdS-NTP, and CdS-NTP after catalytic reaction.



**Figure S2.** Room-temperature PL spectra of NTP and NTP embedded with different weight ratios of CdS (excitation wavelength = 280 nm).



Figure S3. FT-IR spectra of NTP and CdS-NTP composites.



Figure S4. TGA analysis of pure NTP, CdS-NTP and pure CdS samples under nitrogen atmosphere.



Figure S5. H<sub>2</sub> evolution from photocatalysts under visible light.



**Figure S6.** TEM (a), HRTEM (b) images of  $CdS_5$ -NTP<sub>1</sub> sample and CdS particles size distribution in  $CdS_2$ -NTP<sub>1</sub> (c) and  $CdS_5$ -NTP<sub>1</sub> (d).

| Sample                             | $\mathbf{S}_{\text{BET}}$ | $\mathbf{S}_{Langmuir}$ | Total pore                    | Cd        | CdS   | Activity           |
|------------------------------------|---------------------------|-------------------------|-------------------------------|-----------|-------|--------------------|
|                                    | $(m^2 g^{-1})$            | $(m^2 g^{-1})$          | volume                        | (wt% ICP) | (wt%) | $(\mu mol h^{-1})$ |
|                                    |                           |                         | $(\text{cm}^3 \text{g}^{-1})$ |           |       |                    |
| NTP                                | 1502                      | 2031                    | 1.16                          | 0         | 0     | 0                  |
| CdS <sub>1</sub> -NTP <sub>2</sub> | 1012                      | 1324                    | 0.75                          | 23        | 29    | 58.1               |
| CdS <sub>1</sub> -NTP <sub>1</sub> | 896                       | 1121                    | 0.58                          | 34        | 43    | 74.4               |
| CdS <sub>2</sub> -NTP <sub>1</sub> | 421                       | 689                     | 0.29                          | 49        | 62    | 225.1              |
| CdS <sub>5</sub> -NTP <sub>1</sub> | 209                       | 414                     | 0.12                          | 60        | 77    | 148.5              |
| Pure CdS                           | 94                        | 183                     | 0.07                          | 77        | 100   | 21.5               |

 Table S1. Summary of textural properties and hydrogen production activity of samples (20 mg catalyst)