Revised supporting information for

Enhanced photocatalytic activity of Eu doped Bi_2S_3 nanoflowers for degradation of organic pollutants under visible light illumination

Arpita Sarkar,^a Abhisek Brata Ghosh,^a Namrata Saha,^a Amit Kumar Dutta,^a Divesh N. Srivastava,^b Parimal Paul,^{*b} and Bibhutosh Adhikary^{*a}

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India

^bDepartment of Analytical Science, Central Salt and Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India

Corresponding Author

*E-mail: <u>bibhutoshadhikary@yahoo.in;</u> Tel.: +91-033-2668-4561-64 ext: 512; Fax: +91-033-2668-2916.

(a)

Fig. S1 IR spectra of (a) $[Eu(ACDA)_3 \cdot H_2O]$ complex and (b) HACDA ligand

(b)

Fig. S2 UV-Vis spectra of $[Eu(ACDA)_3 \cdot H_2O]$ complex

Element	Weight%	Atomic%
S K	17.95	58.48
Eu L	2.69	1.85
Bi M	79.36	39.67
Totals	100.00	

Fig. S3 EDX result of Eu doped Bi_2S_3 (Eu=1.85%)

Fig. S4 EDX result of Eu doped $\rm Bi_2S_3$ (Eu=2.32 %)

Element	Weight%	Atomic%
S K	17.80	57.85
Eu L	6.22	4.26
Bi M	75.98	37.89
Totals	100.00	

Fig. S5 EDX result of Eu doped Bi_2S_3 (Eu=4.26%)

Fig. S6 SEM images of (A) 2.32% Eu^{+3} doped and (B) 4.26% Eu^{+3} doped Bi_2S_3 NPs.

Fig. S7 TEM images of 1.85% Eu doped Bi_2S_3 NPs.

Fig. S8 TEM images of 2.32 % Eu doped Bi_2S_3 NPs.

Fig. S9 TEM images of undoped Bi_2S_3 NPs.

Fig. S10 UV-Vis absorbance spectrum of Eu doped Bi_2S_3 NPs. Inset: UV-Vis absorbance spectrum of undoped Bi_2S_3 NPs.

Fig. S11 Photoluminescence spectrum of undoped Bi_2S_3 and Eu doped Bi_2S_3 NPs.

Fig. S12 Time dependent UV-Vis spectral change of MB solution (2×10^{-5} M) catalyzed by 10 mg Eu doped Bi₂S₃ NPs (Eu=1.85%).

Fig. S13 Time dependent UV-Vis spectral change of MB solution (2×10^{-5} M) catalyzed by 10 mg Eu doped Bi₂S₃ NPs (Eu=2.32 %).

Fig. S14 Time dependent UV-Vis spectral change of Rhodamine B solution $(2 \times 10^{-5} \text{M})$ catalyzed by 10 mg Eu doped Bi₂S₃ NPs (Eu=4.26 %).

Fig. S15 Time dependent UV-Vis spectral change of Rose bengal solution (2×10^{-5} M) catalyzed by 10 mg Eu doped Bi₂S₃ NPs (Eu=4.26 %).

Fig.S16 Relative Concentration (C_t/C_o) vs irradiation time (*t*) plot of (i) Rose bengal and (ii) Rhodamine B catalyzed by 10 mg Eu doped Bi₂S₃ NPs (Eu=4.26%) under light irradiation. Inset: corresponding kinetic plot.

Fig. S17 The time-dependent UV-Vis absorption spectral changes of aqueous 4-Chloro phenol solution (2×10^{-5} M) catalyzed by Eu doped Bi₂S₃ (Eu=4.26%).

Fig. S18 The time-dependent UV-Vis absorption spectral changes of aqueous Phenol solution $(2 \times 10^{-5} \text{ M})$ catalyzed by Eu doped Bi₂S₃ (Eu=4.26%).

Fig. S19 The time-dependent UV-Vis absorption spectral changes of aqueous p-cresol solution (2×10^{-5} M) catalyzed by Eu doped Bi₂S₃ (Eu=4.26%).

Fig. S20 Mass spectra of aqueous solution of phenol after degradation

Fig. S21 Mass spectra of aqueous solution of 4-Chloro phenol after degradation

Fig. S22 Mass spectra of aqueous solution of p-cresol after degradation

Fig. S23 Mass spectra of aqueous solution of 4-tert-butyl phenol after degradation

Fig. S24 Mass spectra of aqueous solution of 2,5-dimethyl phenol after degradation

Fig. S25 Mass spectra of aqueous solution of 2,6-di-tert-butyl-p-cresol phenol after degradation.

Photocatalyst	Rate constant (k) (min ⁻¹)(MB)
Pure Bi ₂ S ₃ NPs	3.93×10^{-3}
WO ₃	4.12×10^{-3}
Eu doped Bi ₂ S ₃ NPs (Eu=1.85%)	1.17× 10 ⁻¹
Eu doped Bi ₂ S ₃ NPs (Eu=2.32%)	1.50×10^{-1}
Eu doped Bi ₂ S ₃ NPs (Eu=4.26%)	2.62×10^{-1}

Table S1. Comparison of the Rate Constants of three different ratios of Eu doped Bi_2S_{3} , pure Bi_2S_3 and WO_3 .

Table S2. Comparison of the Rate Constants of Rose bengal and Rhodamine B dyescatalysed by 10 mg of Eu doped Bi_2S_3 (Eu=4.26%).

Photocatalyst	Rate constant (k) (min ⁻¹)
Eu doped Bi ₂ S ₃ NPs (Eu=4.26%)	5.64×10^{-2} (Rhodamine B)
	2.97×10^{-1} (Rose bengal)

 Table S3. Comparison of kinetic parameters in terms of rate constant.

Photocatalyst	Rate constant (k) (min ⁻¹)	
Eu doped Bi ₂ S ₃ (Eu=4.26%)	9.65 ×10 ⁻² (4-Chrolo Phenol)	
Eu doped Bi_2S_3 (Eu=4.26%)	7.13×10^{-2} (Phenol)	
Eu doped Bi_2S_3 (Eu=4.26%)	6.43 ×10 ⁻² (p-Cresol)	
Eu doped Bi_2S_3 (Eu=4.26%)	2.17×10^{-2} (4-tert-butyl phenol)	

Table S4. Comparison of the substitution effects of various phenolic compounds using Eudoped Bi_2S_3 (Eu=4.26%) catalyst.

Types of phenol	End product	Dimmerization occur
		through
Phenol	Formic Acid	para position
4-Choro Phenol	Acetic Acid	ortho position
p-cresol	Acetic Acid	ortho position
4-tert-butyl phenol	Acetic Acid	ortho position
2,5-dimethyl phenol	Acetic Acid	para position
2,6-di-tert-butyl -p-cresol	Acetic Acid	para position