Electronic Supplementary Information (ESI)

A crucial role of CeO₂–ZrO₂ support for the low temperature water gas shift

reaction over Cu-CeO₂-ZrO₂ catalysts

Dae-Woon Jeong, Hyun-Suk Na, Jae-Oh Shim, Won-Jun Jang, and Hyun-Seog Roh*

Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 220-710,

S. Korea

Table S1

H₂ consumption of the Cu-CeO₂, Cu-ZrO₂, and Cu-CeO₂-ZrO₂ catalysts

Catalyst	H ₂ -consumption (mmol/g)
Cu–CeO ₂	4.22
$Cu-Ce_{0.8}Zr_{0.2}O_2$	4.33
Cu-Ce _{0.6} Zr _{0.4} O ₂	3.50
$Cu-Ce_{0.4}Zr_{0.6}O_2$	3.20
Cu-Ce _{0.2} Zr _{0.8} O ₂	2.81
Cu–ZrO ₂	2.55
Theoretical value ^a	2.50

^a Attributed to the reduction of CuO alone