#### **Supplementary Information.**

## 1/ Detailed calculations of CO conversion (X<sub>CO</sub>) and products selectivities (S<sub>i</sub>)

$$XCO(\%) = 100 \times \frac{(nCO)in - (nCO)out}{(nCO)in}$$

Where  $(n_{CO})_{in}$  and  $(n_{CO})_{out}$  are the molar flow rates of CO in and out of the reactor.

### Selectivity in a *j* product containing *i* carbon atoms:

$$Sj~(\%) = 100 \times \frac{i \times nj}{(nCO)in - (nCO)out}$$

Where  $n_i$  is the molar flow rate of the product j out of the reactor.

Example for CH<sub>4</sub> selectivity:

$$SCH4~(\%) = 100 \times \frac{nCH4}{(nCO)in - (nCO)out}$$

The selectivity of C5+ products (products with at least 5 carbon atoms) was calculated as:

$$S5 + (\%) = 100 - (SC1 + SC2 + SC3 + SC4)$$

Where  $S_{C1}$ ,  $S_{C2}$ ,  $S_{C3}$  and  $S_{C4}$  are the selectivities in products with 1, 2, 3 and 4 carbon atoms respectively.

## Yield $\eta_i$ in a *j* product:

$$\eta j (\%) = \frac{XCO \times Sj}{100}$$

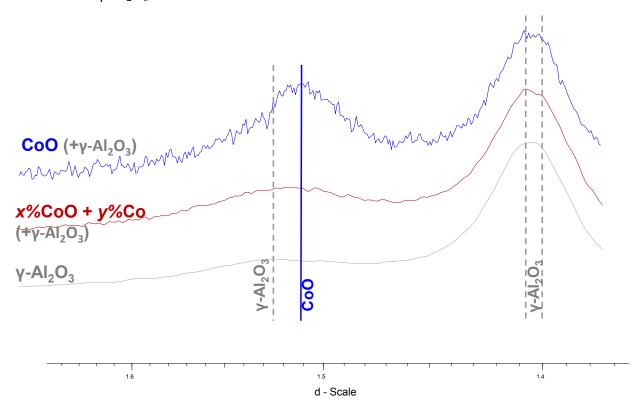
### 2/ TOF calculation

$$TOF (molCO.molCosurf - 1.s - 1) = \frac{100 \times XCO \times (nCO)in \times M(Co)}{mcatalvst \times \%Co \times D}$$

Where  $(n_{CO})_{in}$  is expressed in mol.s<sup>-1</sup>, cobalt molar mass M(Co) in g.mol<sup>-1</sup>, catalyst weight  $m_{catalyst}$  in g, cobalt loading %Co in wt% and dispersion D in %.

A corrected TOF was also calculated taking into account the cobalt reduction degree (μ expressed in %):

$$TOF corr\left(molCO.molCosurf - 1.s - 1\right) = \frac{100 \times XCO \times (nCO)in \times M(Co)}{mcatalyst \times \%Co \times D} \times \frac{100}{4}$$


3/ Quantification of CoO on X-ray diagrams and estimation of reduction degree During *in situ* reduction of the catalyst, crystalline changes were followed by XRD. Around 250°C under hydrogen, only CoO and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> were detected and the corresponding diffraction pattern was used as intern reference "100%CoO" (**Figure S1**).

The signals assigned to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> being constant during activation and reaction, it was possible to subtract their contribution from the *operando* diagrams, using as extern reference the diffraction pattern of the pure  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> used for the catalyst preparation. The diagrams were normalized with respect to the area at 1.41 Å exclusively assigned to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

The area  $A_{1.51}$  of the diffraction peak at 1.51 Å was used to quantify CoO, as:

$$\%CoO = 100 \times \frac{A1.51 - Aalumina\ REF}{ACoO\ REF - Aalumina\ REF}$$

Where  $A_{alumina\;REF}$  and  $A_{CoO\;REF}$  are respectively the areas at 1.51 Å on the diffraction patterns of the references  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and 100%CoO.



**Figure S1.** Diffraction patterns of CoO/alumina, alumina and a Co/alumina catalyst containing fcc Co and CoO crystalline phases.

If CoO and Co are the only cobalt-containing phases, then:

д = Reduction Degree (%) = 
$$\%$$
Co =  $100 - \%$ CoO

#### 4/ TEM measurements

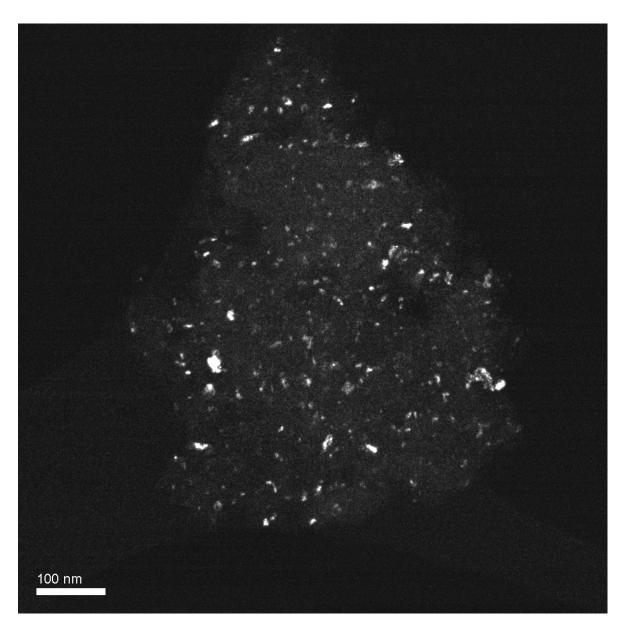
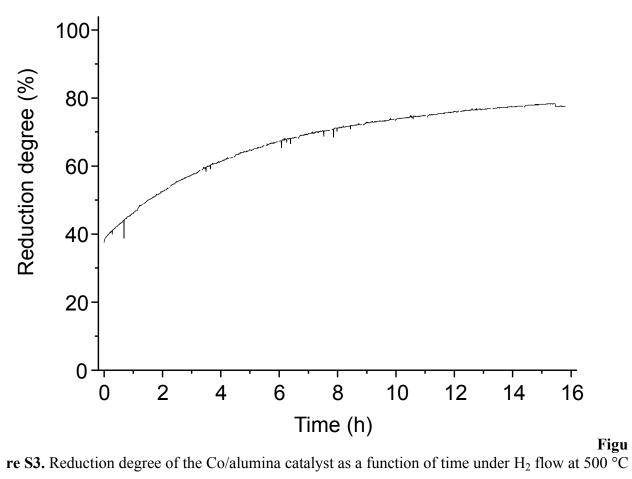




Figure S2. TEM picture of the Co/alumina catalyst.

# 5/ Magnetism measurements

