Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Methanation of CO₂ and reverse water gas shift reactions on Ni/SiO₂ catalysts: The

influence of particle size on selectivity and reaction pathway

H.C. Wu^a, Y.C. Chang^b, J.H. Wu^a, J.H. Lin^c, I.K. Lin^c, C.S. Chen^{a,*}

^aCenter for General Education, Chang Gung University, 259, Wen-Hua 1st Rd.,

Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China

^bTaiwan Power Research Institute, 84, Ta-An Road, Shu-Lin Taipei New City 23847

Taiwan, Republic of China

^cDepartment of Materials Science, National University of Tainan, 33, Sec. 2, Shu-Lin

St., Tainan 700, Taiwan, Republic of China

Catalyst	CO adsorption	Ni surface area ^a	Ni particle size ^b
	(µmol/g cat.)	(m^{2}/g)	(nm)
0.5 wt% Ni/SiO ₂	8.5	0.33	nd ^c
10 wt% Ni/SiO ₂	68.8	2.68	9

Table S1 Characterization of the 0.5 wt% and 10 wt% Ni/SiO_2 catalysts

^a Estimated from CO chemisorption.

^b Estimated from the XRD spectra in Figure 1.

^c The XRD pattern was too weak to be observed.

Fig. S1 Arrhenius plots for the TOF of CO CH_4 formation from CO_2 hydrogenation

on Ni/SiO₂ catalysts.

Fig. S2 IR spectra of H_2 and CO_2 co-adsorbed on the 0.5 wt% Ni/SiO₂ catalyst at various temperatures. All experiments were performed by passing a pure CO_2 stream (20 mL/min) over the catalysts for 20 min at 298 K, followed by purging the CO_2 with a He stream (20 mL/min). The IR spectra were recorded to monitor the adsorbed CO_2 on Ni/SiO₂ under a H₂ stream at elevated temperatures.

Fig. S3 IR spectra of CO_2 and H_2/CO_2 adsorbed on the SiO₂ at room temperature. All experiments were performed by passing a pure CO_2 stream (20 mL/min) over the catalysts for 20 min at 298 K, followed by purging the CO_2 with a He stream (20 mL/min). The IR spectrum of H_2 and CO_2 co-adsorption was recorded to monitor the adsorbed CO_2 on SiO₂ under a H_2 stream at room temperature.

Fig.S4 TPD spectra of the 0.5 wt% and 10 wt% Ni/SiO_2 catalysts at 298 K after a 1-

 μL dose of formic acid.

Fig. S5 IR spectra of the CO adsorbed on the reduced 0.5 wt% and 10 wt% Ni/SiO_2

catalysts at 298 K.

Appendix

Far away from equilibrium conditions, the steady-state rate of CO_2 hydrogenation to form CO and CH_4 *via* parallel and consecutive reaction network is described by the following equations:

The possible reaction network of CO₂ hydrogenation can be described:

- (1) $H_2+CO_2\rightarrow CO+H_2O$
- (2) $3H_2+CO\rightarrow CH_4+H_2O$
- (3) $4H_2+CO_2\rightarrow CH_4+2H_2O$

(A) parallel pathway:

$$\frac{r_{CO}}{r_{CH_4}} = \frac{k_1 P_{H_2}^{1.1} P_{CO_2}^{0.06}}{k_3 P_{H_2}^{1.1} P_{CO_2}^{0.06}} = \frac{k_1}{k_3}$$

Selectivity of CH₄: $S_{CH_4} = \frac{r_{CH_4}}{r_{CO} + r_{CH_4}} = \frac{k_3}{k_1 + k_3}$

(B) consecutive pathway:

$$\frac{r_{CO}}{r_{CH_4}} = \frac{k_1 P_{\mu_2}^{0.3} P_{cO_2}^{0.5} - k_2 P_{\mu_2}^{0.3} P_{cO_2}^{0.5} X_{CO_2}}{k_2 P_{\mu_2}^{0.3} P_{cO_2}^{0.5} X_{CO_2}} \quad (X_{CO_2} : CO_2 \text{ conversion})$$

Selectivity of CH₄: $S_{CH_4} = \frac{r_{CH_4}}{r_{CO} + r_{CH_4}} = \frac{k_2 P_{H_2}^{0.3} P_{CO_2}^{0.5} X_{CO_2}}{k_1 P_{H_2}^{0.3} P_{CO_2}^{0.5}} = \frac{k_2}{k_1} X_{CO_2}$