Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

1	Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-					
2	dimethylfuran from 5-hydroxymethylfurfural using minerals-					
3	derived Cu catalysts as versatile catalysts					
4 5	Yifeng Zhu ^{a,b} , Xiao Kong ^{a,b} , Hongyan Zheng ^c , Guoqiang Ding ^c , Yulei Zhu ^{*a,c} and Yong-Wang Li ^{a,c}					
6 7	^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China					
8	^b University of Chinese Academy of Sciences, Beijing 100049, PR China					
9	° Synfuels China Co. Ltd, Beijing, 101407, PR China					
10						
11						
12						
13						
14						
15						
16						
17						
18	*Corresponding author: State Key Laboratory of Coal Conversion, Institute of					
19	Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.					
20	Tel.: +86 351 7117097; fax: +86 351 7560668.					
21	E-mail address: zhuyulei@sxicc.ac.cn (Y. Zhu).					

1 Table S1 Catalytic performance of reduced CuZn-2, unreduced CuZn-2 and

Catalyst	P (MPa)	T (°C)	t (h)	HMF conversion (%)
Reduced CuZn-2	1.5	100	1	83.5
Reduced CuZn-inf	1.5	100	1	16.3
Unreduced CuZn-2	1.5	100	1	0.7

2 reduced CuZn-inf for DHMF production. ^a

³ ^a Conditions: HMF 1.5 g, catalyst 0.5 g, 1,4-dioxane 35 ml.

4

5 We performed model tests over reduced CuZn-2, unreduced CuZn-2 and 6 reduced CuZn-inf for DHMF production at 100 °C (**Table S1**). The reduced 7 CuZn-2 catalyst (composed of highly dispersed metallic Cu and ZnO sites) 8 showed a HMF conversion of 83.5%; the reduced CuZn-inf catalyst (composed 9 of metallic Cu sites) showed a conversion of 16.3%. In contrast, the unreduced 10 CuZn-2 (mainly composed of ZnO and unreduced CuO sites) give a conversion 11 of 0.7%. The results revealed that bare ZnO can hardly catalyze HMF 12 hydrogenation to DHMF at the conditions.

13

Figure S1. Catalytic performance of CuZn-x catalysts within 1 h and the
correlation with metallic Cu specific areas (100 °C, 1.5 MPa H₂, HMF 1.5 g,
catalyst 0.5 g).

Figure S2. Catalytic performance of CuZn-x catalysts for 20 h (100 °C, 1.5 MPa
H₂, HMF 1.5 g, catalyst 0.5 g).

Figure S3. XRD spectra of fresh reduced and used CuZn-2 catalysts (Metallic
Cu particle sizes were calculated using Scherrer Equation).