Electronic Supplementary Information

Effects of Subnanometer Silver Clusters on Photocatalyst AgBr(110)

Surface: A Theoretical Investigation

Yuhua Chi,^{a b} Lianming Zhao,^{a b} Xiaoqing Lu,^{a b} Changhua An,^{a b} Wenyue Guo,^{*a b}

Yunqi Liu,** c and Chi-Man Lawrence Wud

^aCollege of Science, China University of Petroleum, Qingdao, Shandong 266580, P.

R. China

^bKey Laboratory of New Energy Physics & Materials Science in Universities of Shandong Province, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

^cState Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, Qingdao 266580, P. R. China

^dDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China

(Correspondence should be addressed to wyguo@upc.edu.cn, liuyq@upc.edu.cn.)

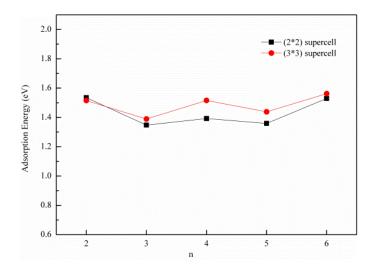


Fig. S1. The adsorption energies of Ag_n on the AgBr(110) supercells of (2×2) (black) and (3×3) (red).

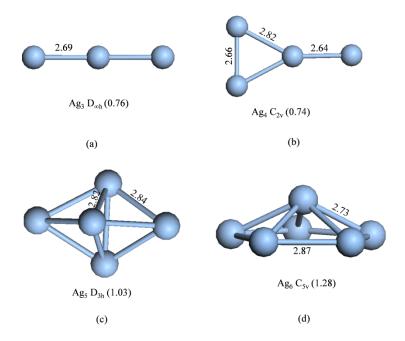


Fig. S2. The second most stable structures of clusters Ag_n (n = 3 – 6) with the bond lengths in Å. Given below are the symmetry groups together with the binding energies in eV.

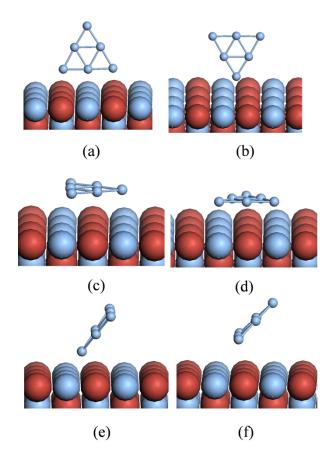


Fig. S3. The adsorption mode for the most stable Ag_n cluster on the AgBr(110) surface. (a) and (b) vertical; (c) and (d) horizontal; (e) and (f) inclined.

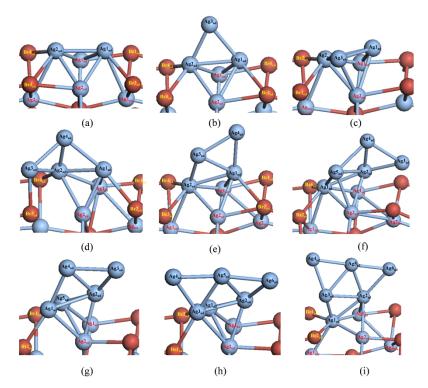
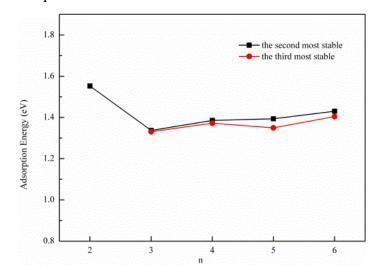
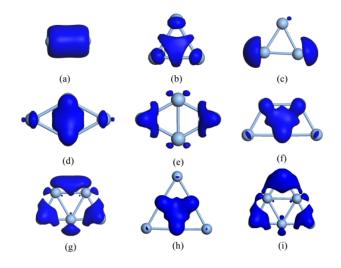
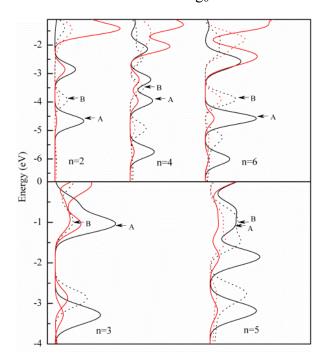
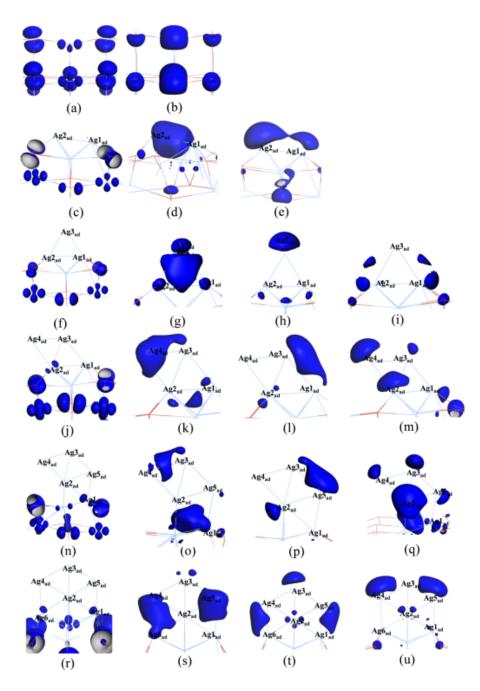
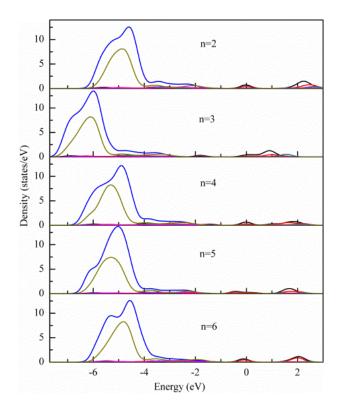


Fig. S4. The second most and third most stable structures of $Ag_n/AgBr(110)$. (a) $Ag_2/AgBr(110)$; (b) and (c) $Ag_3/AgBr(110)$; (d) and (e) $Ag_4/AgBr(110)$; (f) and (g) $Ag_5/AgBr(110)$; (h) and (i) $Ag_6/AgBr(110)$. Only two stable structures are found for Ag_2 on the AgBr(110) surface. Silver and bromine atoms are indicated as light blue and wine spheres.


Fig. S5. Adsorption energies for the second most and third most stable structures of $Ag_n/AgBr(110)$.


Fig. S6. The isosurface plots of wave functions for the free clusters. (a) at the Fermi level of Ag_2 ; (b) and (c) below and at the Fermi level of Ag_3 ; (d) and (e) below and at the Fermi level of Ag_4 ; (f) and (g) below and at the Fermi level of Ag_5 ; (h) and (i) below and at the Fermi level of Ag_6 . Isovalue considered is 0.02 electron/Å³.

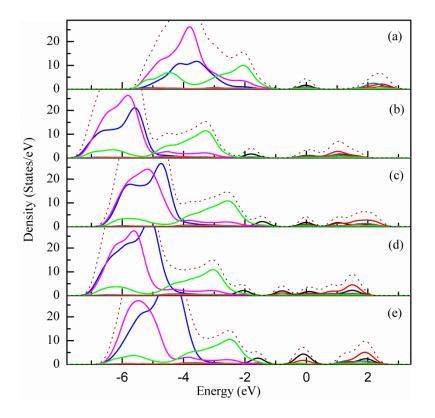

Fig. S7. Partial density of states (PDOSs) of the Ag 5s/5p states of Ag_n near the Fermi level. A and B represent the Fermi level of the free and adsorbed systems. Solid and dot lines denote free and adsorbed clusters; red and black lines denote Ag 5s and 5p states.

Fig. S8. The isosurface plots of wave functions for the clean and adsorbed AgBr(110) surfaces. (a) and (b) VBM and CBM of the clean surface; (c), (d) and (e) VB, MIGB and CB of Ag₂/AgBr(110); (f), (g) and (h,i) VB, MIGB and CB of Ag₃/AgBr(110); (j), (k) and (l, m) VB, MIGB and CB of Ag₄/AgBr(110); (n), (o, p) and (q) VB, MIGB and CB of Ag₅/AgBr(110); (r), (s) and (t, u) VB, MIGB and CB of Ag₆/AgBr(110). Isovalue is 0.02 electron/Å³ for the VB and 0.016 electron/Å³ for the MIGB and CB.

Fig. S9. The PDOS of Ag_{ed} and Ag_{tro} on the $Ag_n/AgBr(110)$ surfaces. Black line is for Ag_{ed} 5s, red line is for Ag_{ed} 5p, blue line is for Ag_{ed} 4d, dark cyan line is for Ag_{tro} 5s, magenta line is for Ag_{tro} 5p, dark yellow is for Ag_{tro} 4d. The energy is referenced to the Fermi level of the $Ag_n/AgBr$ system.

Fig. S10. Partial density of states (PDOSs) of cluster Ag 5s, 5p, 4d, surface Ag 5s, 5p, 4d and Br 4p states of the second most stable structures for (a) Ag2/AgBr(110), (b) Ag3/AgBr(110), (c) Ag4/AgBr(110), (d) Ag5/AgBr(110), (e) Ag6/AgBr(110). Black line is for Agad 5s, red line is for Agad 5p, blue line is for Agad 4d, dark cyan line is for Aged 5s, orange line is for Aged 5p, magenta line is for Aged 4d, green line is for Bred 4p, and wine dot line is the sum of the local DOS of all Ag and Br atoms in the first layer of the adsorbed system. The energy is referenced to the Fermi level of the Agn/AgBr system.

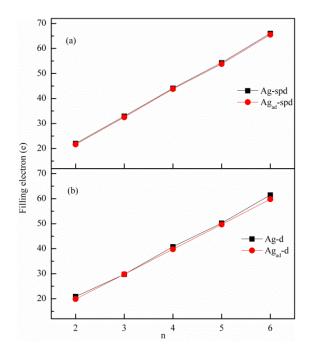


Fig. S11. The filling electron for free (black line) and adsorbed (red line) Ag clusters.(a) spd filling electrons; (b) d filling electrons.

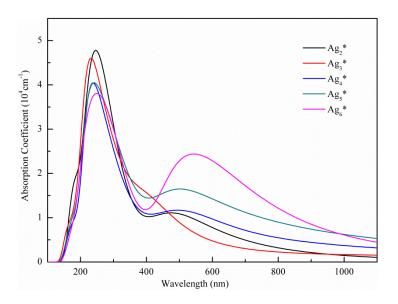


Fig. S12. The calculated optical absorption coefficients for the second most stable structures of $Ag_n/AgBr(110)$ surfaces.

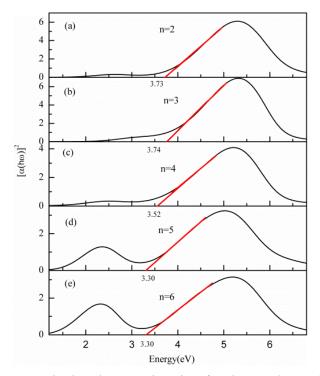
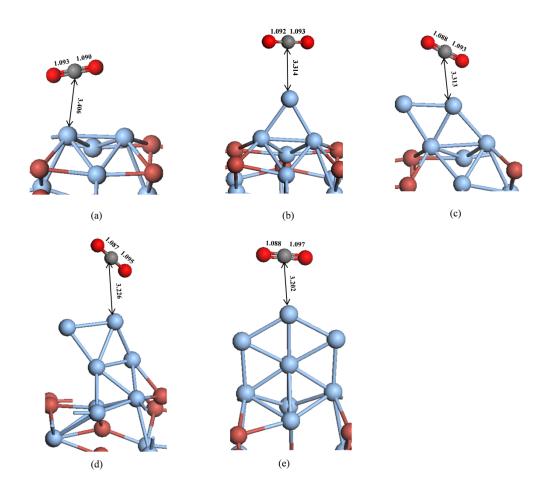



Fig. S13. The band gap estimation for the $Ag_n/AgBr(110)$ systems.

Fig. S14. The adsorption structures of CO₂ on the $Ag_n/AgBr(110)$ (n = 2 - 6) surfaces. Given on figures are the C-O bond length and the distance in Å.

Cluster	Free (d ₁)	Adsorbed (d ₂)	Δd
Ag ₂	-7.93	-8.34	0.41
Ag ₃	-5.69	-6.56	0.87
Ag_4	-7.70	-8.22	0.52
Ag_5	-5.05	-5.78	0.73
Ag_6	-7.65	-8.01	0.36

Table S1. The d-band centers of the free and adsorbed silver clusters (in eV) as well

as the shifts of the d-band centers (in eV) after adsorptions.

Section S1. The Computational details of CO_2 adsorbed on the Ag_n/AgBr(110) surfaces:

The molecular CO₂ were adsorbed on the most stable structures of $Ag_n/AgBr(110)$ (n = 2 - 6) surfaces. The initial structures were assumed by the linear CO₂ molecular always keeping at a distance of 3.0 Å from the top of the Ag_n clusters on the substrate, similar to the adsorption mode of oxygen on the Pt clusters ^[1]. The stable adsorption configurations of CO₂/Ag_n/AgBr(110) were optimized in CASTEP, using the parameters as mentioned in manuscript. The adsorption energy was calculated by the following formula:

$$E_{ad} = -\left(E_{CO_2/Ag_n/AgBr} - E_{Ag_n/AgBr} - E_{CO_2}\right)$$

References

[1] T. Imaoka, H. Kitazawa, W. -J. Chun, S. Omura, K. Albrecht, and K. Yamamoto,J. Am. Chem. Soc. 2013, 135, 13089–13095.