Electronic Supplementary Information

Enhancement in the Photocatalytic Activity of Carbon Nitride through Hybridization with Light-sensitive AgCl for Carbon Dioxide Reduction to Methane

Lutfi Kurnianditia Putri^a, Wee-Jun Ong^a, Wei Sea Chang^b and Siang-Piao Chai^{a,*}

^{a.} Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia

^{b.}Mechanical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia

* Corresponding author.

Tel: +603-5514 6234; Fax: +603-5514 6207

E-mail address: chai.siang.piao@monash.edu

(1) CO₂ photocatalytic reduction supplementary data

Figure S2. A schematic representation of the gas phase photocatalytic reactor setup

(2) TEM image of urea-derived Carbon Nitride

Figure S3. TEM image of as-prepared carbon nitride

(3) Protonated CN (p-CN) FTIR analysis

Figure S4. FTIR spectra of (a) protonated CN and (b) CN

(4) Particle distribution histogram

Figure S5 Particle distribution histogram for (a) AgCl (b) AgCl-10/CN (c) AgCl-30/CN (d) AgCl-50/CN (e) AgCl-70/CN

(5) UV-Vis band gap determination

The band gap energies (E_g) of CN and AgCl was obtained from the energy dependence equation of the absorption coefficient (α) for semiconductors

$$\alpha h v \propto (h v - E_a)^{\eta}$$

Where α , h, ν , E are absorption coefficient, Planck constant, light frequency and band gap energy respectively. This α can then be assumed to be proportional to the Kubelka-Munk function [F(R_{∞})] and with an appropriate choice of η , a plot of $[F(R_{\infty}) \cdot hv]^{1/\eta}$ against hv is linear near the edge and the intercept of this line on $[F(R_{\infty}) \cdot hv]^{1/\eta}=0$ (x-intercept) gives the optical absorption edge energy E_g. The exponent η , value is determined by the type of optical transition upon photon irradiation. $\eta=2$ for indirect band gap semiconductors such as AgCl¹. For all amorphous, polymeric materials, including CN, $\eta=2$ since they exhibit energy dependence similar to that found in indirect transitions².

Figure S6. Kubelka-Munk transformed reflectance spectra of (a) carbon nitride (CN) and (b) silver chloride (AgCl)

Supporting References

- 1. K. Dai, L. Lu, J. Dong, Z. Ji, G. Zhu, Q. Liu, Z. Liu, Y. Zhang, D. Li and C. Liang, *Dalton Transactions*, 2013, **42**, 4657-4662.
- 2. L. Han, P. Wang, C. Zhu, Y. Zhai and S. Dong, *Nanoscale*, 2011, **3**, 2931-2935.