Supporting Information for

Photocatalytic Reduction of CO_2 Coupling with Alcohol Selectivity Oxidation under Ambient Conditions

Liujie Wang^{a,b}, Xiaoliang Zhang^{b^*}, Longhua Yang^a, Chao Wang^a, and Hongming Wang^{a^*}

Figure S1. (a) SEM image of TiO_2 calcined at 500 °C for 2 hours. (b) Representative SEM image of Ag/TiO2 nanocomposite.

Figure S2. (A) XRD pattens of the samples calcined at different temperatures. (B) XRD pattens of Ag/TiO₂ calcined at 500 $^{\circ}$ C for 2hours loading with different silver.

Figure S3. GC chromatograms of (a) product (MeOH) after irradiation for 18 hours and (b) before irradiation and (c) the stand CH₃OH and benzyl alcohol in CH₃CN.

Figure S4. (A)UV-vis DSR spectra of TiO2 with different Ag loading content catalysts and (B) photoluminescence spectra of TiO2 with different Ag loading content catalysts : Ex : 265 nm.