Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting information

Copper-catalyzed carbon-carbon bond cleavage of primary propargyl alcohols: β -carbon elimination of hemiaminal intermediates

Ye-Won Kang,^a Yu Jin Cho,^a Kwang-Youn Ko,^c Hye-Young Jang^{a,b}*

^aDepartment of Energy Systems Research, Ajou University, Suwon 443-749, Korea, ^bKorea Carbon Capture & Sequestration R&D Center, Deajeon 305-343, Korea, ^cDepartment of Chemistry, Ajou University, Suwon 443-749

Table of Contents

I.	Experimental	S2
II.	GC analysis of the reaction of 1a	S3
III.	GS-MS analysis of conversion of 1a to 1b	S4
IV.	Optimization results of 2b-5b	S5-S6
V.	Spectral data for 1b-6b and 1d-11d	S7-S80

Experimental Section

General. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian Mercury plus (400 MHz) spectrometer at 25 °C. Chemical shifts are reported in delta (δ) units, part per million (ppm) downfield from trimethylsilane. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian Mercury plus (100 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, part per million (ppm) relative to the center of the triplet at 77.16 ppm for deuteriochloroform. High resolution mass spectra were obtained with a magnetic sector-electric sector double focusing mass analyzer equipment. IR spectra were recorded with a FT-IR spectrometer. Products **1d'**¹ and **1e**², exhibited spectral properties consistent with previous literature reports.

Representative procedure for the reaction: Copper(II) acetate (4.5 mg, 0.025 mmol), 2,2,6,6-tetramethylpiperidine *N*-oxy (TEMPO, 3.9 mg, 0.025 mmol), and morpholine (65.3 mg, 0.75 mmol) were added to a solution of 3-phenylprop-2-yn-1-ol **1a** (66.1 mg, 0.5 mmol) in toluene (0.5 M, 1 ml). A slow stream of O_2 was passed through this solution for 1 min. It stirred for 18 h at 100 °C under O_2 atmosphere. The reaction mixture was evaporated and purified by flash silica gel column chromatography using 1% ethyl acetate/hexane to afford 1,4-diphenylbuta-1,3-diyne **1b** (42.1 mg, 83 %).

Representative procedure for the triazole formation: Copper(II) acetylacetonate (6.5 mg, 0.025 mmol), 2,2,6,6-tetramethylpiperidine *N*-oxy (TEMPO, 3.9 mg, 0.025 mmol), and *N*-benzylmethylamine (90.9 mg, 0.75 mmol) were added to a solution of 3-phenylprop-2-yn-1-ol **1a** (66.1 mg, 0.5 mmol) and azidomethylbenzene **1c** (99.9 mg, 0.75 mmol) in toluene (0.5 M, 1 ml). A slow stream of O_2 was passed through this solution for 1 min. It stirred for 18h at 100 °C under O_2 atmosphere. The reaction mixture was evaporated and purified by flash silica gel column chromatography using 8% ethyl acetate/hexane to afford 1-benzyl-4-phenyl-1H-1,2,3-triazole **1d** (100.4 mg, 85 %).

¹ G. Cheng, X. Zeng, J. Shen, X. Wang, X. Cui, Angew. Chem. Int. Ed. 2013, 52, 13265.

² A. V. Khramchikhin, M. D. Stadnichuk, J. Gen. Chem. USSR, 1991, 61, 1864.

The reaction of 1a was monitored by gas chromatography (GC).

General GC conditions

Gas chromatography analysis was performed on an Agilent 6890N instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30m, 0.32 mmi.d., 0.25 mm film thickness) using nitrogen as a carrier gas.

The copper-catalyzed conversion of 1a to 1b was analyzed by GC-MS to detect phenylpropiolaldehydes. (The below spectrum was obtained after 2 h)

GC-MS conditions

The GC-MS analysis of a reaction mixture was performed using a temperature program of 110 °C for 0 minutes, 10 °C/min up to 200 °C and hold for 10 minutes, on Agilent GC-MS system (6890 GC and 5973 mass spectrum analyzer with EI ionization) with a HP-5MS (30 m x 250 μ m x 0.25 μ m) capillary column. The flow rate of helium as carrier gas was 0.6 mL min⁻¹ under a condition of constant flow. Qualitative analysis was based on the comparison of retention times and the computer mass spectra libraries using Wiley 275 GC/MS Library (Wiley, New York).

Optimization of each compound: Initially, aliphatic compound **5b** was optimized after the best conditions for **1b** were observed. Both aromatic and aliphatic propargyl alcohols favor either $Cu(OAc)_2$ or $Cu(acac)_2$. Depending on substrates, different additives and the concentration were selected to obtain the good yield.

Optim	izat	ion res	ults of 2b		
F	=	саtаl <u>ТЕМ</u> ОН ^а О2, to 10	yst (5 mol%) <u>PO (5 mol%)</u> F— additives Iluene (0.5 M) 0°C, 18 h	<hr/>	 _F
	entry	catalyst	additives (equiv)	Yield	
	1 2 3 4 5 6 7 8	$\begin{array}{c} Cu(OAc)_2\\ Cu(OAc)_2\\ Cu(OAc)_2\\ Cu(OAc)_2\\ Cu(acac)_2\\ Cu(acac)_2\\ Cu(acac)_2\\ Cu(acac)_2\\ Cu(acac)_2\\ Cu(acac)_2\end{array}$	morpholine (1.5) piperidine (1.5) pyrrolidine (1.5) MeNHBn (1.5) morpholine (1.5) piperidine (1.5) pyrrolidine (1.5) MeNHBn (1.5)	42% 52% 59%(66%) ^a 43% 51%(26%) ^a 39% 41% 40%	
Optim	²0.25 iizat	M concentrat	ion ults of 3b atalyst (5 mol%) <u>EMPO (5 mol%)</u> additives ₂ toluene (0.5 M) 100 °C, 18 h	MeO-	OMe
	en	try catalys	t additives (equiv)	Yield	_
		1 Cu(OAc 2 Cu(OAc 3 Cu(OAc 4 Cu(OAc 5 Cu(OAc 6 Cu(acac 7 Cu(acac 8 Cu(acac	by morpholine (1) piperidine (1.) pyrrolidine (1.) pyrrolidine (1.) MeNHBn (1) morpholine (1.) morpholine (1.) piperidine (1.) pyrrolidine (1.) pyrrolidine (1.) morpholine (1.) morpholine (1.) morpholine (1.) morpholine (1.) morpholine (1.)	.5) 63% 5) 67%(62% 5) 61% 5) 35% .5) 47% 5) 46% .5) 55%(68% 5) 36%	6) ⁹ (6) ⁹
Ontim	°0 izat	.25 M concen	ults of 4h		
		cataly TEMF OH a O ₂ tol 100	yst (5 mol%) <u>PO (5 mol%)</u> dditives uene (0.5 M) D°C, 18 h	<hr/>	
	entry	catalyst	additives (equiv)	Yield	
	1 2 3 4 5 6 7	Cu(OAc) ₂ Cu(OAc) ₂ Cu(OAc) ₂ Cu(OAc) ₂ Cu(Acc) ₂ Cu(acac) ₂ Cu(acac) ₂ Cu(acac) ₂	morpholine (1.5) piperidine (1.5) pyrrolidine (1.5) MeNHBn (1.5) morpholine (1.5) piperidine (1.5) pyrrolidine (1.5)	37% 50% 56%(75%) ^a 45% 63%(57%) ^a 59% 55%	
	8	Cu(acac) ₂	MeNHBn (1.5)	47%	

^a0.25 M concentration

Optimization results of 5b

C ₇ H	15	Cat. OH <u>TEI</u> O ₂ , t	alyst (5 mol%) <u>MPO (5 mol%)</u> additives oluene (0.25 M) 100 °C, 18 h	15 — —	-C7H15
	entry	catalyst	additives (equiv)	Yield	
	1	Cu(OAc) ₂	morpholine (1.5)	40% (22%) ^a	
	2	CuOAc	morpholine (1.5)	37%	
	3	CuCl ₂	morpholine (1.5)	-	
	4	Cu(acac) ₂	morpholine (1.5)	50%	
	5	CuCl	morpholine (1.5)	15%	
	6	Cul	morpholine (1.5)	-	
	7	Cu(acac) ₂	piperidine (1.5)	57%	
	8	Cu(acac) ₂	pyrrolidine (1.5)	74%	
	9	Cu(acac) ₂	MeNHBn (1.5)	75%	
	10	Cu(acac) ₂	MeNHBu (1.5)	38%	
Op	°0.5 N Dtimi	a concentration	n results of 6	b	
\langle	}_=	Cat TE OH O ₂ ,	alyst (5 mol%) <u>MPO (5 mol%)</u> additives toluene (0.5 M) 100 °C, 18 h		
	entr	y catalyst	additives (equiv)	Yield	
	1	Cu(OAc) ₂	morpholine (1.5)	44%	

_>-		OH 20, to 10	PO (5 mol%) additives luene (0.5 M) 0 °C, 18 h		<
	entry	catalyst	additives (equiv)	Yield	
	1	Cu(OAc) ₂	morpholine (1.5)	44%	
	2	Cu(OAc) ₂	piperidine (1.5)	39%	
	3	Cu(OAc) ₂	pyrrolidine (1.5)	46%	
	4	Cu(OAc) ₂	MeNHBn (1.5)	49%(31%) ^a	
	5	Cu(acac) ₂	morpholine (1.5)	55%(42%) ^a	
	6	Cu(acac) ₂	piperidine (1.5)	48%	
	7	Cu(acac) ₂	pyrrolidine (1.5)	46%	
	8	Cu(acac) ₂	MeNHBn (1.5)	47%	

^a0.25 M concentration

1,4-diphenylbutadiyne (Table 1, 1b). The representative procedure was followed to yield **1b** (42.1mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (m, 4H), 7.36 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 129.2, 128.4, 121.8, 81.7, 74.1 ppm; IR (neat) 3049, 2148, 1592, 1485 cm⁻¹; HRMS (EI+) cacld for C₁₆H₁₀(M⁺) 202.0783, found 202.0780.

1,4-bis(4-fluorophenyl)buta-1,3-diyne (2b). The general procedure was followed to yield **2b** (39.3 mg, 66 %); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (m, 4H), 7.04 (m, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 163.3 (d, J = 251.3 Hz), 134.8 (d, J = 7.5 Hz), 118.0 (d, J = 3.8 Hz), 116.1 (d, J = 23.8 Hz), 80.7, 73.8 ppm; IR (neat) 3357, 1643, 1502, 1225, 828 cm⁻¹; HRMS (EI+) calcd for C₁₆H₈F₂(M⁺) 208.0594, found 238.0592.

2b / 1H

····································	Current Data Parameters NAME may22-aju-jhy EXPNO 4 PROCNO 1	F2 - Acquisition Parameters Date_ 20150522 Time 17.04 INSTRUM spect INSTRUM 3264 PULPROG 5 mm PABBO BB/ PULPROG 3266 TOUDENT CDC13 SOLVENT CDC13 NS 640 SN 29761.904 NS 0.908261 SN 0.908261 SN 0.5505024 AQ 0.5505024	DW 16.800 usec DE 6.50 usec TE 298.0 K D1 2.0000000 sec TD0 0.0300000 sec TD0 1	======= CHANNEL f1 ======== SFO1 125.7709936 MHz NUC1 13C 13C P1 90.0000000 W	===== CHANNEL f2 ======= SF02 500.1320005 MHz NUC2 500.1320005 MHz NUC2 500.1320005 MHz NUC2 90.00 EPDP2 19.0000000 W PLM2 0.30886999 W	F2 - Processing parameters SI 16384 SF 125.757618 MHz WDW EM SSB 0 1.00 Hz GB 0 1.00 Hz CGB 0 1.40	
							- 2
							- 64
91.51 -							- 09
64.97 89.08							- 8
							- 6
20.811 20.811 20.811 20.811							12
62.451							140
62.291							160
							- 18
							- 200

1,4-bis(4-methoxyphenyl)buta-1,3-diyne (3b). The general procedure was followed to yield **3b** (44.7 mg, 68 %); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, 4H, *J* = 8.8 Hz), 6.86 (d, 4H, *J* = 8.8 Hz), 3.82 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 134.0, 114.2, 114.1, 114.0, 81.4, 73.1, 55.5 ppm; IR (neat) 3484, 1599, 1264, 742 cm⁻¹; HRMS (EI+) calcd for C₁₈H₁₄O₂(M⁺) 262.0994, found 262.0992.

S17

1,4-dip-tolybuta-1,3-diyne (4b). The general procedure was followed to yield **4b** (43.1 mg, 75 %); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, 4H, J = 8.0 Hz), 7.15 (d, 4H, J = 8.0 Hz), 2.37 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 132.4, 129.2, 118.8, 81.7, 73.6, 21.9 ppm; IR (neat) 3382, 1636, 1504, 810 cm⁻¹; HRMS (EI+) calcd for C₁₈H₁₀(M⁺) 230.1096, found 230.1095

¹H NMR (400 MHz) at 25 $^{\circ}$ C

¹³C NMR (100 MHz) at 25 °C

S21

1,4-bis(4-heptylphenyl)buta-1,3-diyne (5b). The general procedure was followed to yield **5b** (46.1 mg, 75 %); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (t, 4H, J = 6.8 Hz), 1.52 (m, 4H), 1.36 (m, 4H), 1.29 (m, 12H), 0.88 (t, 6H, J = 6.4 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 76.8, 65.4, 32.0, 29.1, 29.0, 28.6, 22.9, 19.5, 14.4 ppm; IR (neat) 3447, 2955, 2929, 1652, 1465 cm⁻¹; HRMS (EI+) calcd for C₁₈H₃₀(M⁺) 246.2348, found 246.2346.

¹H NMR (400 MHz) at 25 $^{\circ}$ C

S25

1,4-dicyclohexylbuta-1,3-diyne (6b). The general procedure was followed to yield **6b** (29.6 mg, 55 %); ¹H NMR (500 MHz, CDCl₃) δ 2.43 (m, 2H), 1.79 (m, 4H), 1.70 (m, 4H), 1.48 (m, 6H), 1.29 (m, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 82.1, 65.3, 32.5, 29.7, 26.0, 25.0 ppm; IR (neat) 2929, 2344, 1448, 750 cm⁻¹; HRMS (EI+) calcd for C₁₆H₁₀(M⁺) 214.1722, found 214.1721.

	er	HZ HZ Se K K Se Se	MH: W	HMH
Data Parameters may22-aju-jhy 1	Uuisition Paramet 20150522 16.27 spect 5 mm PABBO BB/ 2230 32768 CDC13 CDC13 4	$\begin{array}{c} 6487.889\\ 0.197995\\ 2.5253205\\ 2.5253205\\ 77.067\\ 77.067\\ 1.0000000\\ 1.0000000\\ 1\end{array}$	<pre>c CHANNEL f1 ==== 500.1325092 1H 10.20 19.0000000</pre>	cessing paramete 16384 500.1300119 EM 0 0.30 0 1.00
Current NAME EXPNO PROCNO	F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	SWH FIDRES AQ RG DW DE TTE D1 TD0	SFO1 SFO1 NUC1 P1 PLW1	FZ - Pro ST WDW SSB SSB SSB LB LB FC PC

6b / 1H

여 음 대 학 교 종이 MITOWA UNIVERSITY 기조과학공동기기원 역사기공명연구실

NAME may22-aju-jhy EXPNO 2 PROCNO 1	1111111111111111111111111111111
Current Data Parameters	111 111 111 111 111 111 111 11

1-benzyl-4-m-tolyl-1H-1,2,3-triazole (Table 2, 1d). The representative procedure was followed to yield **1d** (100.4mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 2H), 7.68 (s, 1H), 7.38 (m, 5H), 7.31 (m, 3H), 5.54 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 134.6, 130.5, 129.0, 128.7 (2C), 128.1, 128.0, 125.6, 119.5, 54.3 ppm; IR (neat) 3091, 2360, 1600, 1496, 1223 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₃N₃ (M⁺) 235.1109, found 235.1108.

¹H NMR (400 MHz) at 25 $^{\circ}$ C

1-benzyl-5-phenyl-1H-1,2,3-triazole (Scheme 3, 1d'). ¹H NMR (400 MHz, CDCl₃) 1d+1d' (major : minor = 2:1) δ 7.80 (m, 2H, major), 7.73 (s, 1H, minor), 7.68 (s, 1H, major), 7.43 - 7.23 (m, 16H, major : minor = 2:1), 7.06 (m, 2H, minor), 5.55 (s, 2H, major), 5.53 (s, 2H, minor) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 135.4, 134.6, 133.2, 130.5, 129.4, 129.1, 128.9, 128.8 (2C), 128.7 (2C), 128.1, 128.0, 127.1, 126.8, 125.6, 119.5, 54.3, 51.9 ppm; IR (neat) 3122, 2360, 1606, 1497, 1207 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₃N₃ (M⁺) 235.1109, found 235.1108.

¹H NMR (400 MHz) at 25 $^{\circ}$ C

S36
1-benzyl-4-(4-flourophenyl)-1H-1,2,3-triazole (Figure 1, 2d). The representative procedure was followed to yield **2d** (97.1 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (m, 2H), 7.63 (s, 1H), 7.39 (m, 2H), 7.30 (m, 2H), 7.07 (m, 2H), 5.55 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J_{CF} = 244.9 Hz), 147.1, 134.5, 129.0, 128.7, 128.0, 127.3 (d, J_{CF} = 7.6 Hz), 126.7 (d, J_{CF} = 3.0 Hz), 119.3, 115.7 (d, J_{CF} = 21.2 Hz), 54.3 ppm; IR (neat) 3102, 1611, 1495, 1226 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₂FN₃ (M⁺) 253.1015, found 253.1014.

¹³C NMR (100 MHz) at 25 °C

1-benzyl-4-(4-chlorophenyl)-1H-1,2,3-triazole (Figure 1, 3d). The representative procedure was followed to yield **3d** (115.3 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (m, 2H), 7.66 (s, 1H), 7.37 (m, 5H), 7.30 (m, 2H), 5.56 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 134.4, 133.7, 129.1, 129.0, 128.9, 128.7, 128.0, 126.8, 119.6, 54.3 ppm; IR (neat) 3117, 1631, 1480, 1225 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₂ClN₃ (M⁺) 269.0720, found 269.0717.

1-benzyl-4-p-tolyl-1H-1,2,3-triazole (Figure 1, 4d). The representative procedure was followed to yield **4d** (97.3 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0*Hz*, 2H), 7.63 (s, 1H), 7.38 (m, 3H), 7.32 (m, 2H), 7.21 (d, *J* = 7.6*Hz*, 2H), 5.56 (s, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 137.9, 134.7, 129.4, 129.1, 128.9, 128.7, 128.0, 127.7, 127.4, 125.6, 119.2, 54.3, 21.5 ppm; IR (neat) 3145, 2360, 1553, 1222 cm⁻¹; HRMS (EI+) cacld for C₁₆H₁₅N₃ (M⁺) 249.1266, found 249.1264.

¹H NMR (400 MHz) at 25 °C

.

¹³C NMR (100 MHz) at 25 °C

1-benzyl-4-m-tolyl-1H-1,2,3-triazole (Figure 1, 5d). The representative procedure was followed to yield **5d** (105.7 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.65 (s, 1H), 7.57 (d, J = 8.0Hz, 1H), 7.41 - 7.28 (m, 6H), 7.13 (d, J = 3.6Hz, 1H), 5.56 (s, 2H), 2.38 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 138.4, 134.7, 130.3, 129.1, 128.9, 128.7 (2C), 128.0, 126.3, 122.7, 119.5, 54.3, 21.6 ppm; IR (neat) 3137, 2354, 1644, 1591, 1219 cm⁻¹; HRMS (EI+) cacld for C₁₆H₁₅N₃ (M⁺) 249.1266, found 249.1267.

 13 C NMR (100 MHz) at 25 °C

1-benzyl-4-o-tolyl-1H-1,2,3-triazole (Figure 1, 6d). The representative procedure was followed to yield **6d** (97.6mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (m, 1H), 7.60 (s, 1H), 7.37 (m, 3H), 7.29 (m, 2H), 7.26 (m, 3H), 5.57 (s, 2H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 135.3, 134.7, 130.7, 129.8, 129.0, 128.7, 128.6, 128.0, 127.8, 125.9, 121.7, 54.1, 21.5 ppm; IR (neat) 3154, 2360, 1606, 1487, 1229 cm⁻¹; HRMS (EI+) cacld for C₁₆H₁₅N₃ (M⁺) 249.1266, found 249.1268.

¹³C NMR (100 MHz) at 25 °C

1-benzyl-4-cyclohexenyl-1H-1,2,3-triazole (Figure 1, 7d). The representative procedure was followed to yield **7d** (68.1 mg, 57%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 3H), 7.30 (s, 1H), 7.24 (m, 2H), 6.48 (m, 1H), 5.48 (s, 2H), 2.33 (m, 2H), 2.16 (m, 2H), 1.72 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 134.9, 128.9, 128.5, 127.8, 127.2, 124.9, 118.2, 54.1, 26.5, 25.4, 22.6, 22.4 ppm; IR (neat) 3120, 2360, 1625, 1540, 1258 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₇N₃ (M⁺) 239.1422, found 239.1423.

¹H NMR (400 MHz) at 25 °C

1-benzyl-4-cyclohexyl-1H-1,2,3-triazole (Figure 1, 8d). The representative procedure was followed to yield **8d** (99.3 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (m, 3H), 7.23 (m, 2H), 7.15 (s, 1H), 5.45 (s, 2H), 2.72 (m, 1H), 2.01 (m, 2H), 1.71 (m, 3H), 1.35 (m, 4H), 1.21 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 134.9, 128.9, 128.4, 127.9, 119.2, 54.0, 35.4, 33.1, 26.3, 26.2 ppm; IR (neat) 3107, 2354, 1632, 1453, 1211 cm⁻¹; HRMS (EI+) cacld for C₁₅H₁₉N₃ (M⁺) 241.1579, found 241.1579.

1-benzyl-4-cyclopropyl-1H-1,2,3-triazole (Figure 1, 9d). The representative procedure was followed to yield **9d** (51.5 mg, 52%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 3H), 7.27 (m, 2H), 7.13 (s, 1H), 5.45 (s, 2H), 1.91 (m, 1H), 0.87 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 134.9, 129.0, 128.5, 128.0, 119.6, 54.1, 8.0, 7.0 ppm; IR (neat) 3072, 2250, 1562, 1497, 1218 cm⁻¹; HRMS (FAB+) cacld for C₁₂H₁₃N₃ (M+H)⁺ 200.1188, found 200.1190.

1-benzyl-4-pentyl-1H-1,2,3-triazole (Figure 1, 10d). The representative procedure was followed to yield **10d** (81.5 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 3H), 7.25 (m, 2H), 7.17 (s, 1H), 5.47 (s, 2H), 2.66 (t, *J* = 7.6 *Hz*, 2H), 1.63 (m, 2H), 1.28 (m, 4H), 0.86 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 134.9, 128.9, 128.5, 127.8, 120.4, 54.0, 31.6, 29.2, 25.8, 22.5, 14.2 ppm; IR (neat) 3065, 2350, 1643, 1456, 1213 cm⁻¹; HRMS (FAB+) cacld for C₁₄H₁₉N₃ (M+H)⁺ 230.1657, found 230.1658.

1-benzyl-4-(trimethylsilyl)-1H-1,2,3-triazole (Figure 1, 11d). The representative procedure was followed to yield **11d** (93.4 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.34 (m, 3H), 7.25 (m, 2H), 5.53 (s, 2H), 0.28 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 134.9, 129.0, 128.7, 128.5, 128.0, 53.5, -0.9 ppm; IR (neat) 3106, 2360, 1679, 1449, 1248 cm⁻¹; HRMS (EI+) cacld for C₁₂H₁₇N₃S₁ (M⁺) 231.1192, found 231.1193.

¹H NMR (400 MHz) at 25 $^{\circ}$ C

1-octyl-4-phenyl-1H-1,2,3-triazole (12d). The general procedure was followed to yield **12d** (120.3 mg, 93 %); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, 2H, *J* = 8.4 Hz), 7.74 (s, 1H), 7.39 (t, 2H, *J* = 7.6 Hz), 7.29 (t, 1H, *J* = 7.6 Hz), 4.33 (t, 2H, *J* = 7.2 Hz), 1.89 (m, 2H), 1.27 (m, 10H), 0.86 (t, 3H, *J* = 5.6 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 130.6, 128.7, 127.9, 125.5, 119.4, 50.4, 31.8, 30.5, 29.2, 29.1, 26.6, 22.7, 14.2 ppm; IR (neat) 3392, 2955, 1635, 1217 cm⁻¹; HRMS (EI+) calcd for C₁₆H₂₃N₃(M⁺) 257.1892, found 257.1889.

¹H NMR (400 MHz) at 25 °C

S80