Electronic Supplementary Information

Improved Benzene Production from Methane Dehydroaromatization over Mo/HZSM-5 Catalysts *via* Hydrogen-Permselective Palladium Membrane Reactors

S. Natesakhawat,^{a,b} N. C. Means,^{a,c} B. H. Howard,^a M. Smith,^{d,e} V. Abdelsayed, ^{d,e} J. P. Baltrus, ^a Y. Cheng,^a J. W. Lekse,^{a,c} D. Link^a and B. D. Morreale^a

^aNational Energy Technology Laboratory, United States Department of Energy, P.O. Box 10940, Pittsburgh, PA 15236, USA.

^bDepartment of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

^cAECOM, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA

^dNational Energy Technology Laboratory, United States Department of Energy, Morgantown, WV 26507, USA

eAECOM, 3610 Collins Ferry Road, Morgantown, WV 26507, USA

E-mail: Sittichai.Natesakhawat@NETL.DOE.GOV

Table S1 Experimental matrix of the permeation study

Effect	Gas Mixtures	У _{Н2, feed} (mol%)	Q _{Ar, sweep} (cm ³ min⁻¹)	Q _{feed} (cm ³ min ⁻¹)	т (°С)
Sweep gas flow rate	H_2/N_2	1/5/10/25	50/350/700	50	350
Feed gas flow rate	H_2/N_2	1/5/10/25	350	50/500/2000	350
Membrane temperature	H_2/N_2	10	350	50	350/450/550/700
Presence of CH ₄	H_2/N_2 , H_2/CH_4	10	350	50	700

Fig. 1S Effect of temperature on H₂ flux for the Pd membrane packed with HZSM-5. Testing conditions are as follows: T = 350, 450, 550, and 700 °C, Feed = 10% H₂/N₂, Q_{Feed} = 50 cm³ min⁻¹, Q_{Ar, sweep} = 350 cm³ min⁻¹.

Fig. 2S Comparison of the performance of the 4% Mo/HZSM-5 catalyst in FBR and CMR at 3000 cm³ g_{cat}^{-1} h⁻¹ (A) CH₄ conversion (B) C₆H₆ and aromatic yields (C) selectivity to C₆H₆ and C₁₀H₈.

Fig. 3S XRD patterns of fresh and spent materials: (A) Mo/HZSM-5 (B) Pd membranes. The XRD pattern of HZSM-5 is included for comparison.

Mears criterion calculations*

External mass transfer limitations can be neglected if the Mears criterion listed below is satisfied.

$$\frac{-r_{A(Obs)} x \rho_b x R x n}{k_c x C_{Ab}} < 0.15$$

Where $-r_{A(Obs)}$ is the observed reaction rate (kmol kg_{cat}⁻¹ s⁻¹), ρ_b is the catalyst bed density (kg m⁻³), R is the catalyst pellet radius (m), n is the reaction order of reactant A, k_c is the mass transfer coefficient of reactant A, and C_{Ab} is the concentration of reactant A in the bulk gas phase (kmol m⁻³).

In this study, $\rho_b = 1099.2$ kg m⁻³ and R = 1.5 x 10⁻⁴ m for 4 wt% Mo/HZSM-5 catalyst. For CH₄ dehydroaromatization, n = 6.

For flow over a sphere with very low Reynolds number, Sherwood number (Sh) = 2:

$$Sh = \frac{k_c \, x \, 2R}{D_e}$$

Where D_e is the estimated diffusivity of CH₄ in the bulk gas phase. At 700 °C, $D_e = 4.33 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$.

$$k_c = \frac{2 x 4.33 x 10^{-5}}{2 x 1.5 x 10^{-4}} = 0.289 \text{ m s}^{-1}.$$

At T = 700 °C, WHSV = 750 cm³ g_{cat}^{-1} h⁻¹, TOS = 15 h, $-r_{A(Obs)}$ = 1.014 x 10⁻⁷ kmol k g_{cat}^{-1} s⁻¹, C_{Ab} =8.878 x 10⁻³ kmol m⁻³.

$$\frac{1.014 x 10^{-7} x 1099.2 x 1.5 x 10^{-4} x 6}{0.289 x 8.878 x 10^{-3}} = 3.910 \times 10^{-5} <<0.15$$

At T = 700 °C, WHSV = 9000 cm³ g_{cat}⁻¹ h⁻¹, TOS = 15 h, $-r_{A(Obs)} = 2.017 \times 10^{-7} \text{ kmolkg}_{cat}^{-1} \text{ s}^{-1}$, $C_{Ab} = 1.081 \times 10^{-2} \text{ kmolm}^{-3}$.

$$\frac{2.017 x 10^{-7} x 1099.2 x 1.5 x 10^{-4} x 6}{0.289 x 1.081 x 10^{-2}} = 6.387 \times 10^{-5} \ll 0.15$$

Therefore, the Mears criterion calculations confirm the absence of external mass transfer limitations.

*Reference

W.S. Lee, Z. Wang, W. Zheng, D.G. Vlachos, A. Bhan, *Catal. Sci. Technol.*, 2014, **4**, 2340-2352.