Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

Supporting information

Variation of Redox Activity and Synergestic Effect for Improving Preferential Oxidation of CO in H₂-rich Gases in Porous Pt/CeO₂-Co₃O₄ Catalysts

Baocang Liu^{a,b}, Yongxin Liu^a, Heting Hou^a, Yang Liu^a, Qin Wang^{a,b}, Jun Zhang^{a,b}*

^aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot

010021, P. R. China. ^bInner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner

Mongolia University, Hohhot 010021, P. R. China Tel: 0086 471 4992175; Fax: 0086 471

4992278; Email:cejzhang@imu.edu.cn

Catalysts	Theoretical molar ratio of Co/Ce	Actual molar ratio of Co/Ce	Theoretical content Pt (wt.%)	Actual content Pt (wt.%)
Pt/CeO ₂	0:1	0:1	3	1.75
	7:3	5.7:3	3	1.37
Pt/CeO ₂ -Co ₃ O ₄	1:1	0.9:1	3	1.68
	1:4	1:4.4	3	1.64
Pt/Co ₃ O ₄	1:0	1:0	3	2.07

Table S1 The compositions of macro- and meso-porous Pt/CeO_2 - Co_3O_4 catalysts estimated by ICP-MS and ICP-AES measurements.

Table S2 The BET property of macro- and meso-porous CeO_2 -Co₃O₄ supports and macroand meso-porous Pt/CeO₂-Co₃O₄ catalysts.

Supports and Catalysts	$S_{BET}(m^2.g^{-1})$	$V_p(cm^3.g^{-1})$	$\mathbf{D}_p(\mathbf{nm})$
CeO ₂	72	0.13	3.7
Pt/CeO ₂	66	0.11	3.6
$(7:3)CeO_2-Co_3O_4$	62	0.18	3.6
Pt/(7:3)CeO ₂ -Co ₃ O ₄	57	0.16	3.3
$(1:1)CeO_2-Co_3O_4$	58	0.19	3.2
Pt/(1:1)CeO ₂ -Co ₃ O ₄	54	0.14	3.1
$(1:4)CeO_2-Co_3O_4$	51	0.24	3.2
Pt/(1:4)CeO ₂ -Co ₃ O ₄	46	0.23	3.2
Co_3O_4	29	0.24	2.2
Pt/Co ₃ O ₄	24	0.20	2.1

Table S3 The nominal and actual H_2 consumption of reduction peaks of macro- and mesoporous Pt/CeO₂-Co₃O₄ catalysts with different Ce/Co molar ratios.

Catalysts	Nominal H ₂ consumption (μmol ·g _{Cat.} -1)	Actual H ₂ consumption (μmol ·g _{Cat.} -1)
Pt/CeO ₂	4.44	3.11
Pt/(7:3)CeO ₂ -Co ₃ O ₄	3.51	4.11
Pt/(1:1)CeO ₂ -Co ₃ O ₄	4.26	7.21
Pt/(1:4)CeO ₂ -Co ₃ O ₄	4.21	10.4
Pt/Co ₃ O ₄	5.31	102.1

Fig.S1 SEM images of macro- and meso-porous CeO_2 - Co_3O_4 supports with various molar ratios of Ce/Co at (a and b) 1:0, (c and d) 7:3, (e and f) 1:1, (g and h) 1:4, and (I and j) 0:1.

Fig. S2 (a and b) TEM images of powder Pt/(1:4) CeO₂-Co₃O₄ catalyst; the black spots indicated by arrows are Pt nanoparticles. (c) HAADF-STEM image of powder Pt/(1:4) CeO₂-Co₃O₄ catalyst; the light spots indicated by arrows are Pt nanoparticles. The inset image of (c) is the magnified STEM image of powder Pt/(1:4) CeO₂-Co₃O₄ catalyst. (d-g) EDX elemental mapping of Co, Ce, O, and Pt in powder Pt/(1:4)CeO₂-Co₃O₄ catalyst.

Fig.S3 XRD patterns of powder Pt/CeO_2 – Co_3O_4 catalysts with various Ce/Co molar ratios at (a) 0:1, (b) 1:4, (c) 1:1, (d) 7:3, and (e) 1:0.

Fig.S4 XPS spectra of as prepared macro- and meso-porous $Pt/(1:4)CeO_2-Co_3O_4$ catalyst and macro- and meso-porous $Pt/(1:4)CeO_2-Co_3O_4$ catalyst after calcination at 450 °C.

Fig.S5 CO conversion (left) and CO₂ selectivity (right) of CO PROX reaction in H₂-rich gases on powder (a) Pt/CeO_2 , (b) $Pt/(7:3)CeO_2-Co_3O_4$, (c) $Pt/(1:1)CeO_2-Co_3O_4$, (d) $Pt/(1:4)CeO_2-Co_3O_4$, and (e) Pt/Co_3O_4 catalysts.

Fig.S6 CO conversion (left) and CO₂ selectivity (right) of CO PROX reaction in H₂-rich gases on macro- and meso-porous $Pt/(1:4)CeO_2-Co_3O_4$ performed under different space velocities at (a) 18,000, (b) 30,000, (c) 60,000, and (d) 90,000 mL·g⁻¹.h⁻¹.

Fig.S7 CO conversion (left) and \overline{CO}_2 selectivity (right) of CO PROX reaction in H₂-rich gases on powder Pt/(1:4)CeO₂-Co₃O₄ catalysts performed under different space velocities of (a) 18,000, (b) 30,000, (c) 60,000, and (d) 90,000 mL·g⁻¹·h⁻¹.