Supporting Information

Structure-controlled Porous Films of Nanoparticulate Rhdoped SrTiO₃ Photocatalyst toward Efficient H₂ Evolution

under Visible-light Irradiation

Sayuri Okunaka,^{†‡} Hiromasa Tokudome^{*,†} and Ryu Abe^{*,‡}

[†]Research Institute, TOTO LTD., 2-8-1 Honson, Chigasaki-City, Kanagawa-pref. 253-8577, Japan.

[‡]Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto 615-8510, Japan.

To whom corresponding author should be addressed.

Tel: +81-75-383-2478; Fax: +81-75-383-2478; E-mail: ryu-abe@scl.kyoto-u.ac.jp

1. Experimental

Preparation of SrTiO₃ films

An aqueous solution containing both of $Sr(OAc)_2$ (1.08 mol/L) and lactic acid (2.16 mol/L) and the AA-sol were mixed at the ratio of Sr:Ti = 1.02:1.00, and stirred for 1 hour at room temperature, yielding an yellow transparent sol. The sol was added by an acrylic emulsion and stirred for 15 minutes at room temperature, then dried at 80°C for 3 hours, and finally calcined at 1000°C for 10 hours, yielding $SrTiO_3$ powders samples. As an effective cocatalyst for water reduction, small amount (0.5 wt%) of platinum particles were loaded on all the samples by mean of in-situ photodeposition method.

The SrTiO₃ films were prepared by following process. The SrTiO₃-particles were first dispersed in methanol solution and then mixed with organic compounds (terpineol:butylcarbitol:ethylcellulose = 1:2:2) as vehicles, yielding the paste of SrTiO₃-particles (ca. 20 wt%) having an appropriate viscosity for printing. The films were prepared by screen-printing using pastes of SrTiO₃-particles, followed by calcinations at 500°C for 30 min.

Fig. S1 Cross-sectional SEM images of WH-films.

Fig. S2 Surface SEM images of WH- and SS-films. Yellow arrowed lines show the uncovered parts of substrate.

Fig. S3 SEM images of SrTiO₃:Rh particles ((a) WH-particles, (b) SS-particles)).

Fig. S4 UV-vis spectra of SrTiO₃:Rh films (SS-10') and SrTiO₃:Rh particles (SS-particles).

Fig. S5 Picture of WH-10' (a) before and (b) after photocatalytic reaction.

Fig.S6 Optical microscope images of SrTiO₃:Rh films ((a) WH-10' or (b) SS-10') after photocatalytic reaction.

Fig.S7 Rate of H₂ evolution from an aqueous methanol solution under visible light irradiation on a SrTiO₃ film and from a SrTiO₃-suspended system containing SrTiO₃ particles with the same amount as the film contains.

Conditions: 3×3 cm film with 10 µm thickness, 16 mg particles; reactant solution, 100 mL of 10 vol% aqueous methanol solution; light source, 300 W Xe lamp without cut-off filters.

Fig. S8 SEM images of SrTiO₃:Rh film (WH+20-SS) prepared with a mixture of WH- and SSparticles (SS/(WH+SS) = 20 (wt%)) Yellow dashed line shows the SS-particles.