Electronic Supplementary Information (ESI) For

Preparations of Biocompatible, Biodegradable and Sustainable Polylactides
Catalysted by Aluminum Complexes Bearing Unsymmetrical Dinaphthaleneimine Derivatives via the Ring-Opening Polymerization of Lactides

Bo Gao ${ }^{a, b}$, Dongni Li ${ }^{b}$, Xiang Li ${ }^{a}$, Ranlong Duan ${ }^{a}$, Xuan Pang ${ }^{a *}$, Yuan Cui ${ }^{b}$, Qian Duan ${ }^{b}$ and Xuesi Chen ${ }^{a}$

Correspondence to: Xuan Pang (E-mail: xpang@ciac.ac.cn)

Fig. S1 Crystal structure of compound 2 in reference 14b.
Table S1. Summary of crystallographic data for complexes (rac)-C $\mathbf{C}_{\mathbf{1}}$ and (rac)- $\mathbf{D}_{\mathbf{4}}$.

	(rac) $-\mathrm{C}_{1}$	(rac) - $_{4}$
Formula	$\mathrm{C}_{68} \mathrm{H}_{50} \mathrm{AlCl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{71} \mathrm{H}_{55} \mathrm{AlCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$F_{\text {w }}$	1088.45	1221.42
crystal system	Monoclinic	Monoclinic
space group	P2(1)/n	P2(1)/c
$a(\AA)$	14.265(3)	15.7200(17)
$b(\AA)$	20.847(4)	14.2236(15)
$c(\AA)$	18.412(3)	28.919(3)
α (deg)	90.00	90.00
β (deg)	97.691(4)	96.120(2)
γ (deg)	90.00	90.00
$v\left(\AA^{3}\right)$	5426.1(19)	6429.2(12)
Z	4	4
$\mu\left(\mathrm{mm}^{-1}\right)$	0.237	0.289
$R_{\text {(int) }}$	0.1393	0.0839
GOOF	1.005	1.042
$R_{1}[1>2$ sigma(I) $]$	0.0948	0.0904

$\mathrm{w} R_{2}[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	0.2932	0.2841

Experimental

General Considerations

All operations refer to air and water-sensitive were employed Schlenk line techniques. Elemental analysis were accomplished by a Varian EL microanalyzer, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectra were performed on Bruker AV 300 M or 400 M apparatus at $25{ }^{\circ} \mathrm{C}$ in CDCl_{3} for compounds and macromolecules. The momer conversions were confirmed and P_{m} values were calculated by referencing the reference. ${ }^{1,2,3}$ Gel permeation chromato-graphy (GPC) measurements were conducted with a Waters 515 GPC with CHCl_{3} as the eluant (flow rate: $1 \mathrm{mLmin}^{-1}$, at $35{ }^{\circ} \mathrm{C}$). The molecular weight was adjusted through PS standard. Crystallographic data were gathered and analyzed by referencing the reference ${ }^{4} . \mathrm{AlMe}_{3}$, isopropanol, methanol, rac-1,1'-dinaphthalene-2,2'-diamine, PTSA, (S)-(-)-1,1'-dinaphthalene-2, 2'-diamine, Palladium(II) acetate, rac-BINAP, sodium tert butyl alcohol, aryl bromides, salicylaldehyde, 3,5-di-tertbutylsalicylaldehyde and 3,5-dichlorosalicylaldehyde were obtained from Aldrich. and applied without further purification.

Synthesis of compounds $(S)-\mathrm{L}_{\mathrm{a}},(S)-\mathrm{L}_{\mathrm{b}},(S)-\mathrm{L}_{\mathrm{c}}$ and $(r a c)-\mathrm{L}_{\mathrm{a}},(r a c)-\mathrm{L}_{\mathrm{b}},(r a c)-\mathrm{L}_{\mathrm{c}}$

Upon stirring a solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(0.18 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $(\mathrm{rac})-\operatorname{BINAP}(0.625 \mathrm{~g}, 1.00 \mathrm{mmol})$ in toluene in a Schlenk flask under argon, the aryl bromide (10.00 mmol), (\boldsymbol{S})-(-)-1,1'-dinaphthalene-2,2'-diamine or ($\mathbf{r a c}$)-1,1'-dinaphthalene-2,2'-diamine ($2.84 \mathrm{~g}, 10.00 \mathrm{mmol}$) and sodium tert butyl alcohol $(1.44 \mathrm{~g}, 15.00 \mathrm{mmol})$ were added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min . The Schlenk flask was heated to 60 ${ }^{\circ} \mathrm{C}$. After $5-8 \mathrm{~h}$ the mixture was cooled to $25^{\circ} \mathrm{C}$, poured into diethyl ether $(100 \mathrm{~mL})$, and separated with separating funnel. The solution was dried and distilled dry. The product as colourless solid were attained by flash chromatography on silica gel with petroleum ether/acetic ether $\left(\mathrm{V}_{1} / \mathrm{V}_{2}=12 / 1\right)$ as the eluent, in $62.4-78.1 \%$ yield.

Compound (S)- L_{a} :

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.82-7.89(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.20-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.16(\mathrm{~s}, 1 \mathrm{H}$, $\operatorname{Ar} H), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H) .5 .72-3.40\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{N} H, \mathrm{~N} H_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): 142.81,142.76,140.18,133.91,133.72,129.74,129.43,129.20,129.08,128.42,128.16,128.12,126.98$, $126.84,124.51,123.84,123.32,122.52,121.94,119.78,118.26,117.85,116.81,112.02(24 \mathrm{C}, \mathrm{ArC})$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}(\%)$: C, 86.64; H, 5.59; N, 7.77. Found: C, 86.62; H, 5.51; N, 7.73.

Compound (S)- L_{b}

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.86-7.72(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.12-7.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH})$, $6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.26-4.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N} H, \mathrm{NH}\right.$), $2.07\left(\mathrm{bs}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 143.04$, $142.46,137.59,136.63,133.97,133.92$, $129.65,129.48,128.59,128.43,128.22,128.15,128.04,126.84,126.08,124.20,123.78$, 122.54, 122.06, 118.31, 114.24, 112.33, $111.93(\mathrm{ArC}), 18.35\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}(\%): \mathrm{C}, 86.56 ; \mathrm{H}, 6.23 ; \mathrm{N}, 7.21$. Found: C, 86.59; H, 6.27; N, 7.24.

Compound (S)- L_{c}

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.84-7.77(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.30-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.14-7.07$ (m, 2H, $\operatorname{Ar} H$), 6.99-6.87 (m, 4H, ArH), 5.43 (bs, $1 \mathrm{H}, \mathrm{NH}$), $\left.3.70(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH})^{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 159.88$, $157.48,142.86,140.95,138.71,133.91,133.67,129.80,129.24,128.17,127.02,126.93,124.39,123.78,123.23,122.79,122.71$, 122.57, 121.94, 118.27, 117.09, 115.94, 115.71, 111.86. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{FN}_{2}(\%)$: C, 82.52; H, 5.06; N, 7.40. Found: C, 82.46; H, 5.00; N, 7.32.

The methods described for chiral compounds $(\boldsymbol{S})-\mathbf{L}_{\mathbf{a}},(\boldsymbol{S})-\mathbf{L}_{\mathbf{b}},(\boldsymbol{S})-\mathbf{L}_{\mathbf{c}}$ were used for the synthesis of racemic compounds (rac)- $\mathbf{L}_{\mathbf{a}},($ rac $)-\mathbf{L}_{\mathbf{b}}$, ($\mathbf{r a c}$) $-\mathrm{L}_{\mathrm{c}}$, the same below.

Synthesis of pro-ligands

Pro-ligand (S)- L_{I}

A mixture of $(\boldsymbol{S})-\mathbf{L}_{\mathbf{a}}(0.720 \mathrm{~g}, 2.00 \mathrm{mmol})$, salicylaldehyde $(0.244 \mathrm{~g}, 2.00 \mathrm{mmol})$ and a catalytic quantity of PTSA in toluene $(50 \mathrm{~mL})$ was refluxed for 7 h . After solvent evaporation at reduced pressure, the crude product was purified by flash chromatography on silica gel with petroleum ether/acetic ether $\left(\mathrm{V}_{1} / \mathrm{V}_{2}=16 / 1\right)$ with $1 \% \mathrm{NEt}_{3}$ as the eluent, affording 0.776 g of the yellow solid of the product in 83.5% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 12.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.50(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43-7.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.97-6.77(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 162.36(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 160.85,144.52,142.84,139.31,133.81,133.44,132.87,132.75,132.14,130.04$, $129.29,129.11,129.04,128.26,128.16,127.87,127.38,126.53,126.23,126.17,124.52,123.30,121.51,119.20,118.56,118.48$, 117.68, 117.16 ($\mathrm{ArC}, 28 \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (\%): C, $85.32 ; \mathrm{H}, 5.21 ; \mathrm{N}, 6.03$. Found: C, 85.32; H, 5.21; N, 6.03.

Pro-ligand (S)- \mathbf{L}_{2}

The synthesis of pro-ligand $(\boldsymbol{S})-\mathbf{L}_{\mathbf{2}}$ was similar with pro-ligand $(\boldsymbol{S}) \mathbf{L}_{\mathbf{1}}$, using $(\boldsymbol{S}) \mathbf{L}_{\mathbf{a}}(0.720 \mathrm{~g}, 2.00 \mathrm{mmol})$ and 3 ,5-di-tertbutylsalicylaldehyde ($0.268 \mathrm{~g}, 2.00 \mathrm{mmol})$. The product was isolated as yellow solid. Yield: $0.878 \mathrm{~g}, 76.2 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.26(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 8.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.85(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.72(\mathrm{dd}, J=5.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}$, $\operatorname{Ar} H), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.29(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $6.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.31(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: $\delta 167.63(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 163.04,158.28,144.57,142.90,139.82,139.29,136.72,134.03,133.60,132.58,132.31,130.84,129.90$, 128.97 , $128.79,128.27,128.00,127.69,127.29,126.48,126.38,126.25,125.93,124.54,123.08,121.41,119.32,118.40,118.10$, 117.89, $34.87\left(1 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.00\left(1 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 31.37\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.14\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}(\%)$: C, 85.38; H, 6.99; N, 4.86. Found: C, 85.32; H, 6.93; N, 4.80.

Pro-ligand (S)- L_{3}

$(\boldsymbol{S})-\mathbf{L}_{\mathbf{a}}(0.720 \mathrm{~g}, 2.00 \mathrm{mmol})$ was dissolved in 10 mL of absolute EtOH , and a solution of 3, 5 -dichlorosalicylaldehyde ($0.780 \mathrm{~g}, 2.00$ mmol) in 8 mL of absolute EtOH was added. The solution turned red and a powder started to precipitate. After 2 h under stirring, the red solid was removed by filtration, washed twice with EtOH and dried under vacuum. Yield: $0.499 \mathrm{~g}, 93.6 \%{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.89(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.90(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} H), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.91$ (d, $J=7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H), 6.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 160.98(\mathrm{~s}, 1 \mathrm{C}$, $\mathrm{N}=\mathrm{CH}), 155.50,143.83,142.71,139.30,133.78,133.43,133.04,132.39,130.23,129.59,129.41,129.11,128.34,128.27,127.92$, 127.60 , 126.69, 126.57, 126.42, 124.40, 123.44, 122.79, 122.50, 121.60, 120.21, 119.80, 118.82, 118.68, 118.25, 117.95. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ (\%): C, 74.30; H, 4.16; N, 5.25. Found: C, 74.32; H, 4.19; N, 5.28.

Pro-ligand (S)-L

The synthesis of pro-ligand $(\boldsymbol{S})-\mathbf{L}_{4}$ was similar with pro-ligand $(\boldsymbol{S}) \mathbf{L}_{\mathbf{3}}$, using $(\boldsymbol{S}) \mathbf{L}_{\mathbf{b}}(0.777 \mathrm{~g}, 2.00 \mathrm{mmol})$ and 3,5dichlorosalicylaldehyde $(0.780 \mathrm{~g}, 2.00 \mathrm{mmol})$. The product was isolated as red powder. Yield: $0.975 \mathrm{~g}, 87.0 \%$. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 13.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.02(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.82-7.73(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H)$, $\left.7.28(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 2.21(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH})_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 160.70(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 155.66,144.00,141.62,137.59,136.52,136.41,134.10,133.38,133.36$,
$132.45,130.24,129.86,129.48,128.57,128.46,128.38,128.32,127.84,127.45,126.75,126.69,126.10,123.51,122.78,122.63$, 122.07, 120.31, 118.13, 114.27, 112.96, 18.26. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ (\%): C, 74.87; H, 4.67; N, 4.99. Found: C, 74.82; H, 4.61; N, 4.94.

Pro-ligand (S)-L L_{5}

The synthesis of pro-ligand $\boldsymbol{(S)}$ - $\mathbf{L}_{\mathbf{5}}$ was similar with pro-ligand $(\boldsymbol{S}) \mathbf{L}_{\mathbf{1}}$, using $(\boldsymbol{S})-\mathbf{L}_{\mathbf{c}}(0.757 \mathrm{~g}, 2.00 \mathrm{mmol})$ and salicylaldehyde $(0.244 \mathrm{~g}, 2.00$ $\mathrm{mmol})$. The product was isolated as yellow powder. Yield: $0.795 \mathrm{~g}, 82.5 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 12.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.58(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.62$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.94(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.82-6.73(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 5.19(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 161.74$ (s, 1C, $\mathrm{N}=\mathrm{CH}$), 160.84, 159.61, 157.21, 144.55, 139.93, 138.83, 133.84, 133.50, 132.98, 132.82, 132.13, 130.13, 129.25, 129.09, 128.30, 127.80, 127.41, 126.61, 126.25, 124.45, 123.19, 122.00, 121.93, 119.18, 118.68, 118.40, 117.73, 117.20, 115.77, 115.55. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}$ (\%): C, 82.14; H, 4.80; N, 5.81. Found: C, 82.10; H, 4.72; N, 5.77.

Pro-ligand (S)- \mathbf{L}_{6}

The synthesis of pro-ligand $(\boldsymbol{S})-\mathbf{L}_{6}$ was similar with pro-ligand $(\boldsymbol{S})-\mathrm{L}_{3}$, using $(\boldsymbol{S})-\mathbf{L}_{\mathbf{c}}(0.757 \mathrm{~g}, 2.00 \mathrm{mmol})$ and 3,5 -dichlorosalicylaldehyde $(0.780 \mathrm{~g}, 2.00 \mathrm{mmol})$. The product was isolated as red powder. Yield: $0.943 \mathrm{~g}, 85.8 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.93(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.84-6.78(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.71(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.22(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.46(1 \mathrm{C}$, $\mathrm{N}=\mathrm{C} H), 160.57,159.37,155.35,143.42,139.72,138.50,133.64,133.27,132.93,132.18,130.64,130.05,128.92,128.55,127.31,126.18$, 124.21, 124.03, 123.46, 122.99, 122.66, 121.47, 121.40, 120.06, 118.07, 117.57, 117.47, 116.89, 115.51, 115.29. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}$ (\%): C, 71.88; H, 3.84; N, 5.08. Found: C, 71.79; H, 3.77; N, 5.01.

Synthesis of complexes

Complex (S)- \boldsymbol{A}_{1}

A mixture of $(\boldsymbol{S}) \mathbf{L L}_{\mathbf{1}}(0.465 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{M}$ in toluene, $1.00 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in 15 mL toluene was stirred for 6 h at $50^{\circ} \mathrm{C}$ under an argon atmosphere. And concentrated to 2 mL to give a yellow powder, from which the mother liquor was decanted, and the product was washed with about 0.5 mL of hexane and dried in vacuum. The product was isolated as yellow solid. Yield: $0.497 \mathrm{~g}, 95.6 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Ar} H), 7.93(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 7.77-7.70(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} H), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 7.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H)$, 7.04-6.87 (m, 3H, $\operatorname{Ar} H), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.54-6.48(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 6.38-6.22(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 5.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H),-0.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{AlCH} 3$), $-0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 172.12$, $169.89(1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 140.41,137.68,135.44$, $135.00,130.19,129.92,129.34,128.87$, $128.54,128.31,127.91,127.54,127.15,126.90,126.64,125.88,124.79,124.49,123.55$, $122.88,122.59,121.61,120.67,119.67,118.07,117.94,117.40,117.11,115.20,-8.86\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right),-9.59\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{AlN}_{2} \mathrm{O}$ (\%): C, 80.75; H, 5.61; N, 5.38. Found: C, 80.72; H, 5.50; N, 5.33.

Complex (S)- \boldsymbol{A}_{2}

Complex (S)-A $\mathbf{A}_{\mathbf{2}}$ as yellow solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{A}_{\mathbf{1}}$ with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{2}}(0.576 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.525 \mathrm{~g}, 91.2 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 6.80-7.99(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{Ar} H), 7.67(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.06-7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H)$, 6.98-6.85 (m, 4H, ArH), $5.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right)$, $-0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 172.85,162.03(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 143.95,141.29,140.35,139.93,138.39$, 135.22, 133.67, 132.71, 132.47, 130.77, 129.91, 129.64, 129.16, 128.85, 128.72, 128.35, 128.21, 127.60, 127.41, 126.53, 125.46, $124.28,123.08,122.84,122.67,121.27,118.10,116.67,114.78,35.45,\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.88\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.47\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.16\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-8.53\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right),-10.05\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{AlN}_{2} \mathrm{O}(\%): \mathrm{C}, 81.61 ; \mathrm{H}, 7.17 ; \mathrm{N}, 4.43$. Found: C, 81.70; H, 7.18; N, 4.49.

Complex (S)- \boldsymbol{A}_{3}

Complex (S)- $\mathbf{A}_{\mathbf{3}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{A}_{\mathbf{1}}$ with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{3}}(0.533 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.534 \mathrm{~g}, 90.7 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.00(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 7.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.90(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H), 6.81-6.75(\mathrm{~m}$, $\left.\left.1 \mathrm{H}, \mathrm{Ar} H), 6.68-6.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.17(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-0.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH})_{3}\right),-0.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH})_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 170.96,169.57,158.51(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 141.28,140.22,136.34,134.51,133.53,131.85,130.50$, 130.37, 130.18, 129.03, 128.61, 128.35, 127.97, 127.68, 127.21, 126.68, 126.14, 125.29, 124.44, 124.17, 123.84, 122.87, 122.25, $121.04,119.92,119.54,117.34,109.55,-9.26\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right),-9.60\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{AlN}_{2} \mathrm{O}(\%): \mathrm{C}, 81.00 ; \mathrm{H}$, 6.06; N, 5.11. Found: C, 81.07; H, 6.12; N, 5.15.

Complex (S)- \boldsymbol{A}_{4}

Complex (S)-A $\mathbf{A}_{\mathbf{4}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{A}_{\mathbf{3}}$ with $\boldsymbol{(S)}-\mathbf{L}_{\mathbf{5}}(0.560 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.532 \mathrm{~g}, 86.2 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.91(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.30(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.27-7.14(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.95(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Ar} H), 5.87(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 1.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C} H_{3}\right),-0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH} H_{3}\right),-0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH} H_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): $\delta 170.04$ (s, 1C, $\mathrm{N}=\mathrm{CH}$), $158.38,142.96,141.72,136.90,136.24,135.59,133.62,133.24,131.37,130.54$, $130.39,129.02,128.54,128.21,128.06,127.81,127.56,127.25,127.16,126.71,126.58,125.73,125.29,123.14,122.60,121.85$, 120.91, 119.65, 114.18, 109.59, 18.07, -7.51, -10.21. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}$ (\%): C, 71.96; H, 5.06; $\mathrm{N}, 4.54$. Found: C, 72.01; H, 5.10; N, 4.61.

Complex (S)- \boldsymbol{A}_{5}

Complex (S)-A $\mathbf{A}_{\mathbf{5}}$ as yellow solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{A}_{\mathbf{1}}$ with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{5}}(0.482 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$ except for the reaction temperature was set at $25^{\circ} \mathrm{C}$. Yield: $0.456 \mathrm{~g}, 84.7 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.39-$ $7.25(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.99-6.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $5.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H),-0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right),-0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.95(\mathrm{ArC}), 164.64(\mathrm{ArC}), 160.40(\mathrm{~s}, 1 \mathrm{C}$, $\mathrm{N}=\mathrm{CH}), 158.45,143.62,140.79,137.75,135.11,134.81,133.70,132.97,130.88,130.22,130.02,128.83,128.53,127.85,126.88,126.71$, $124.20,123.84,123.76,123.35,122.44,121.58,118.71,117.45,116.41,116.09,115.87,114.04,-8.55(1 \mathrm{C}, \mathrm{AlCH} 3),-9.87(1 \mathrm{C}, \mathrm{AlCH} 3)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{AlFN}_{2} \mathrm{O}$ (\%): C, 78.05; H, 5.24; N, 5.20. Found: C, 78.00; H, 5.17; N, 5.14.

Complex (S)- \boldsymbol{A}_{6}

Complex (S)-A $\mathbf{A}_{\mathbf{6}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{A}_{\mathbf{5}}$ with $(\boldsymbol{S})-\mathbf{L}_{6}(0.550 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.567 \mathrm{~g}, 93.6 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 7.80(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.37-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.94(\mathrm{t}$, $\left.J=8.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}),-0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right),-0.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH})_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.76,160.43,158.39$ (1C, $\mathrm{N}=\mathrm{CH}$), 158.12, 143.25, 140.76, 137.14, 136.42, 135.00, 133.60, 133.18, $131.59,130.43,130.32,128.62,128.50,128.12,127.89,127.25,126.78,125.71,124.05,123.61,123.51,123.43,122.05,121.09,119.59$, $116.45,116.06,113.84,-8.75\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right),-9.85,\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{AlCl}_{2} \mathrm{FN}_{2} \mathrm{O}(\%): \mathrm{C}, 69.20 ; \mathrm{H}, 4.31 ; \mathrm{N}, 4.61$. Found: C, 69.25; H, 4.37; N, 4.70.

Complex (S)-B \boldsymbol{B}_{1}

A mixture of $(\boldsymbol{S})-\mathbf{L}_{\mathbf{1}}(0.465 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$ in 15 mL toluene was stirred for 30 h at $90^{\circ} \mathrm{C}$ under an argon atmosphere. And concentrated to 2 mL to give a yellow powder, from which the mother liquor was decanted, and the product as yellow solid was acquired by washing with about 0.5 mL of hexane and dried in vacuum. Yield: $0.464 \mathrm{~g}, 92.1 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.75-7.71(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.54-7.52(\mathrm{~m}$, $2 \mathrm{H}, \operatorname{Ar} H), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 7.33(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 7.24(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} H), 7.05(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.95(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.81-6.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H),-0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.91(1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 167.73,164.70$, $157.85,155.49,148.82,147.84,141.11,138.04,134.96,134.38,133.62,132.88,132.42,130.86,130.32,129.96,129.78,128.80$, $128.68,127.89,126.36,125.94,125.85,123.51,122.26,122.07,120.13,118.40,115.34,115.12,-12.63\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{AlN}_{2} \mathrm{O}$ (\%): C, 80.94; H, 4.99; N, 5.55. Found: C, 80.88; H, 4.90; N, 5.47.

Complex (S)- \boldsymbol{B}_{2}

Complex (\boldsymbol{S}) $\mathbf{- B}_{2}$ as yellow solid was acquired by a similar way for (\boldsymbol{S}) - \mathbf{B}_{1} with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{2}}(0.576 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.515 \mathrm{~g}, 83.5 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.72(\mathrm{dd}$, $J=8.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H)$, $7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.70(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.29(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 162.14$, $153.04,147.83,141.30,140.99,139.71,134.46,133.76,133.15,132.79,130.89,130.79,130.44,129.92,129.65,128.98,128.85,128.79$, $128.20,127.82,127.39,127.13,126.18,126.03,125.67,123.72,121.01,120.34,118.45,118.11,35.34\left(1 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.02\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.51\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.35\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-12.36\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{AlN}_{2} \mathrm{O}(\%): \mathrm{C}, 81.79 ; \mathrm{H}, 6.70 ; \mathrm{N}, 4.54$. Found: C, 81.70; H, 6.62; N, 4.43.

Complex (S)- \boldsymbol{B}_{3}

Complex (S)-B \mathbf{B}_{3} as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{B}_{1}$ with $\boldsymbol{(S)}-\mathbf{L}_{\mathbf{3}}(0.533 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.514 \mathrm{~g}, 89.6 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} H), 7.75$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.52-7.44(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.73-6.68$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H),-0.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 171.87(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH})$, $169.86,159.20,142.11,141.45,135.76,135.10,134.19,133.66,131.12,130.79,130.33,129.00,128.68,128.40,127.89,127.55$, $127.10,126.55,126.00,125.83,124.77,124.20,123.98$, $123.13,122.78,121.78,120.99,119.81,117.79,112.30,-12.71$ (1C, AlCH_{3}). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{AlN}_{2} \mathrm{O}$ (\%): C, $71.21 ; \mathrm{H}, 4.04 ; \mathrm{N}, 4.89$. Found: C, $71.28 ; \mathrm{H}, 4.10 ; \mathrm{N}, 5.00$.

Complex (S)-B4

Complex (S)- \mathbf{B}_{4} as orange solid was acquired by a similar method for $(\boldsymbol{S})-\mathbf{B}_{1}$ with $(\boldsymbol{S})-\mathbf{L}_{4}(0.561 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00$ $\mathrm{mmol})$. Yield: $0.516 \mathrm{~g}, 85.2 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.92(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.57-7.49(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Ar} H), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\operatorname{Ar} H), 6.78-6.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 1.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right),-0.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 175.52(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 171.36,164.78,143.42,142.93,141.70,137.59,137.04,135.62,134.70,133.76,133.03,130.24$, $130.17,129.12,128.48,128.40,128.23,127.77,127.55,127.04,126.87,126.44,125.46,125.32,122.32,121.51,119.80,117.89$, 116.17, 114.13, - $12.52\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}(\%)$: C, $71.88 ; \mathrm{H}, 4.52 ; \mathrm{N}, 4.66$; Found: C, 71.81; H, 4.48; N, 4.47.

Complex (S)-B

Complex (\boldsymbol{S})- \mathbf{B}_{5} as yellow solid was acquired by a similar way for (\boldsymbol{S}) - \mathbf{B}_{1} with $(\boldsymbol{S})-\mathbf{L}_{5}(0.482 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$ except for the reaction temperature was set at $45^{\circ} \mathrm{C}$. Yield: $0.472 \mathrm{~g}, 90.3 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{Ar} H), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.51(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.33-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.97(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.45(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.27(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $6.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H),-0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.45(\mathrm{~s}, 1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 164.27,144.49,142.87,141.37$, $137.93,137.00,135.42,134.63,133.55,132.69,130.39,130.28,129.10,128.45,128.32,128.10,127.90,127.68,127.11,126.91,126.59$, $125.73,125.29,122.40,121.72,120.00,119.12,117.96,115.22,112.43,-12.80\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{AlFN}_{2} \mathrm{O}(\%)$: $\mathrm{C}, 78.15$; H, 4.63; N, 5.36. Found: C, 78.11; H, 4.59; N, 5.32.

Complex (S)-B6

Complex (S)-B $\mathbf{B}_{\mathbf{6}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S}) \mathbf{B}_{\mathbf{5}}$ with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{6}}(0.533 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.538 \mathrm{~g}, 91.0 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.73(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.08-$ $7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.82-6.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H),-0.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{AlCH})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.79(1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 165.82,165.10,158.06,155.70,148.45,147.48,140.61,134.24,133.54,133.06,131.84,130.89$, $130.74,130.26,129.99,128.80,128.60,127.97,127.51,127.25,126.68,126.08,125.82,124.89,124.04,122.19,119.65,119.32,115.49$, $115.27,-12.75\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{AlCl}_{2} \mathrm{FN}_{2} \mathrm{O}(\%): \mathrm{C}, 69.05 ; \mathrm{H}, 3.75 ; \mathrm{N}, 4.74$. Found: C, 69.11; H, 3.82; N, 4.78 .

Complex (S)-C C_{1}

A mixture of $(\boldsymbol{S})-\mathbf{L}_{\mathbf{1}}(0.93 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$ in 25 mL toluene was stirred for 8 h at $70{ }^{\circ} \mathrm{C}$ under an argon atmosphere. And concentrated to 3 mL to give a yellow solid, from which the mother liquor was decanted, and the product as yellow solid was acquired by washing with about 0.5 mL of hexane and dried in vacuum. Yield: $0.876 \mathrm{~g}, 90.4 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 7.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.61(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.49(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.95-6.85(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H)$, $6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} H), 6.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 6.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.22(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N} H),-0.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.22(1 \mathrm{C}, \mathrm{N}=\mathrm{CH}), 169.54,167.39,162.44,159.21,151.38,150.14$, $146.19,141.84,137.23,136.01,135.48,134.27,133.53,132.96,132.02,130.89,130.10,129.70,129.00,128.11,127.89,126.92$, $126.04,125.23,124.87,123.59,122.46,119.80,118.03,116.09,-8.92\left(1 \mathrm{C}, \mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{67} \mathrm{H}_{49} \mathrm{AlN}_{4} \mathrm{O}_{2}(\%): \mathrm{C}, 83.04 ; \mathrm{H}$, $5.10 ; \mathrm{N}, 5.78$. Found: C, 83.11; H, 5.16; N, 5.82.

Complex (rac)-C C_{1}

The process described for $\boldsymbol{(S)}-\mathbf{C}_{\mathbf{1}}$ was used for the synthesis of (rac)- $\mathbf{C}_{\mathbf{1}}$ from pro-ligand (rac)- $\mathbf{L}_{\mathbf{1}}$. Crystals of (rac)-C $\mathbf{C}_{\mathbf{1}}$ suitable for X-ray structural determination was grown in dichloromethane/ hexane mixed solution. CCDC: 951766.

Complex (S)-C4

Complex (S)-C $\mathbf{C}_{\mathbf{4}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{C}_{\mathbf{1}}$ with $(\boldsymbol{S})-\mathbf{L}_{\mathbf{4}}(1.122 \mathrm{~g}, 2.00 \mathrm{mmol})$ and AlMe $\mathbf{A}_{3}(1.00 \mathrm{mmol})$. Yield: $0.981 \mathrm{~g}, 84.6 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar} H), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.15(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$, $\left.5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 5.67-5.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 5.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 1.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right),-0.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH} H_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl})_{3}\right) \delta:$ $167.96(\mathrm{~N}=\mathrm{CH}), 157.12,146.86,142.35,139.04,137.18,136.93,133.74,133.07,130.51,130.03,129.58,128.49,128.21,127.94,127.81$, $127.56,127.23,126.90,126.67,126.62,126.29,125.97,124.74,124.39,123.22,121.69,121.13,120.07,114.56,109.75,18.45\left(C H_{3}\right),-$ $8.98\left(\mathrm{AlCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{71} \mathrm{H}_{53} \mathrm{AlCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}(\%)$: C, $73.32 ; \mathrm{H}, 4.59 ; \mathrm{N}, 4.82$. Found: C, 73.39; H, 4.63; N, 4.87.

Complex (S)- C_{6}

Complex (\boldsymbol{S}) $-\mathbf{C}_{\mathbf{6}}$ as orange solid was acquired by a similar way for $(\boldsymbol{S})-\mathbf{C}_{\mathbf{1}} \mathbf{w t i h}(\boldsymbol{S})-\mathbf{L}_{\mathbf{6}}(1.066 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathrm{AlMe}_{3}(1.00 \mathrm{mmol})$. Yield: $0.993 \mathrm{~g}, 87.1 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.84(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.63(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.54(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Ar} H), 7.40(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 7.35-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} H), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 6.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H),-0.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $178.33(\mathrm{~N}=\mathrm{CH}), 169.01,158.55,152.38,148.19,146.84,142.98,139.00,137.08,136.88,134.64,133.02,132.85,131.51,130.11,129.77$, 128.63, 128.22, 128.05, 127.87, 127.43, 126.98, 126.60, 125.95, 125.55, 124.23, 123.08, 121.73, 121.33, 120.71, 114.59, -8.84 (AlCH_{3}). Anal. Calcd for $\mathrm{C}_{67} \mathrm{H}_{43} \mathrm{AlCl}_{4} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$ (\%): C, $70.41 ; \mathrm{H}, 3.79 ; \mathrm{N}, 4.90$. Found: C, 70.37; H, 3.70; $\mathrm{N}, 4.81$.

Complex (rac)-D ${ }_{4}$

A mixture of $(\mathbf{r a c})-\mathrm{C}_{4}(1.16 \mathrm{~g}, 1.00 \mathrm{mmol})$ and methanol $(1.00 \mathrm{mmol})$ in 15 mL toluene was stirred for ca. 10 minuts at $70^{\circ} \mathrm{C}$ in nitrogen. And concentrated to 2 mL to attain orange solid, from which the mother liquor was decanted. Yield: $1.062 \mathrm{~g}, 90.3 \%$. Crystals of (rac)- D_{4} suitable for X-ray structural determination was grown in dichloromethane/hexane mixed solution. CCDC: 908772. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{C} H), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.77-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H)$, $7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.88-6.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 6.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 5.71-5.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{AlOCH}_{3}\right), 1.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 167.56(\mathrm{~N}=\mathrm{CH}), 157.00,146.71,142.29,138.75,137.02,136.56,133.58,132.85,130.42,130.20,129.33,128.17,128.02$, $127.66,127.47,127.32,127.10,126.59,126.47,126.32,126.11,125.80,124.65,124.21,123.00,121.65,120.89,120.55,113.98,107.02$, $42.8\left(\mathrm{AlOCH}_{3}\right), 18.01\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{71} \mathrm{H}_{53} \mathrm{AlCl}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}(\%)$ C, $72.33 ; \mathrm{H}, 4.53 ; \mathrm{N}, 4.75$. Found: C, $72.40 ; \mathrm{H}, 4.61 ; \mathrm{N}, 4.82$.

General procedure for lactide polymerization

In a representational polymerization reaction, aluminum complex (0.3 mmol) and isopropanol $(0.3 \mathrm{mmol})$ in 60 mL toluene were loaded in a flame-dried ampoule containing a magnetic bar. The ampoule was immersed in an oil bath at $70^{\circ} \mathrm{C}$. The solution was stirred for about 10 minutes, when the catalyst was activated completely by isopropanol, subsequently adjust the temperature in the required value, and the required quantity of lactides was added. After a certain reaction time, the polymer was isolated by precipitating with cold methanol. The solid was collected and dried under vacuum at $35^{\circ} \mathrm{C}$ for 36 hours.

Fig. S2 Maldi Tof spectrum of selected PLA samples (for end group analysis)
Analysis of the oligomers by Maldi Tof exhibited PLA of the formula $\mathrm{H}(\mathrm{OCHMeCO})_{2 \mathrm{n}} \mathrm{O}^{i} \mathrm{Pr} \cdot \mathrm{Na}$.

Fig. S3 Representative GPC traces (black: Table 2, entry $8, M_{\mathrm{nGPC}}=1.00 \times 10^{4}$, PDI $=1.07$; red: Table 2, entry $10, M_{\mathrm{nGPC}}=2.08 \times 10^{4}$, $\mathrm{PDI}=1.15)$

Reference

1. Z. H. Tang, X. S. Chen, X. Pang, Y. K. Yang, X. F. Zhang, X. B. Jing, Biomacromolecules 2004, 5, 965-970.
2. X. Pang, H. Z. Du, X. S. Chen, X. Wang, X. B. Jing, Chem. -Eur. J. 2008, 14, 3126-3136.
3. Z. H. Tang, X. S. Chen, Y. K.Yang, X. Pang, J. R. Sun, X. F. Zhang, X. B. Jing, J Polym Sci Part A: Polym Chem. 2004, 42, $5974-5982$.
4. G. M. Sheldrick, SHELXTL, Version 5.1, Siemens Industrial Automation, Inc., 1997.
