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Formulae for the calculation of conversion, selectivity

The paraffin conversion (x) was calculated using the equation:
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where PCO3H8 is the initial propane partial pressure and p. is the partial pressure of any reaction product in

equilibrium conditions, derived from the following equation:

3
K = Pe

S TTE R I

- V,
dzqu—o is the parameter that consider the change of the volume during the reaction (¥
pt eq

and Veq are the volumes of the reaction mixture in initial and equilibrium conditions, respectively), PCOO2 is

where:

the initial partial pressure of CO; and p, is the total pressure.

The selectivity to the reaction products (S) was calculated as:

S: 5 pC
PC3H8_PCH
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The product yield (Y) was calculated as:

_xxS
100 )

Y



Table S1: Codes, composition and textural properties of the Cr/DHS catalysts regenerated after
use in propane ODH.

- Total pore Pore volume Pore
Specific surface .
entry Catalyst area (m?/g) volume 2-3nm diameter
(cm*/g) (cm*/g) (nm)
1 0.25-Cr/DHS 971 0.58 0.55 2.6
2 0.5-Cr/DHS 942 0.55 0.53 2.6
3 1.0-Cr/DHS 847 0.50 0.39 2.7
4 2.0-Cr/DHS 617 0.35 0.26 2.9
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Fig. S1: CsHs conversion vs. chromium loading for ODH of propane on the Cr/DHS catalysts
(CsHs:C02:N2=15:30:55, T=873 K, w=200 h%).
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Fig.52: XRD patterns of the used catalysts: a) MCM-41, b) 0.25-Cr/DHS, c) 0.5-Cr/DHS,
d) 1.0-Cr/DHS, e) 2.0-Cr/DHS.
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Fig. S3: DR UV-Vis spectra of the dehydrated/oxidized (see Experimental section in the main text):
a) MCM-41, b) 0.25-Cr/DHS, c) 0.5-Cr/DHS, d) 1.0-Cr/DHS, e) 2.0-Cr/DHS.
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Fig. S4: DR UV-Vis spectra of catalysts in the dehydrated/oxidized state (dotted lines) and in the
dehydrated/reduced state (see Experimental section in the main text) in the presence of
CO (solid lines): a,a’) 0.25-Cr/DHS, b,b’) 0.5-Cr/DHS, c,c’) 1.0-Cr/DHS, d,d’) 2.0-Cr/DHS.
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Fig. S5: IR spectra of NHs irreversible adsorbed at 298 K on catalysts in the dehydrated/oxidized state

(see Experimental section in the main text): a) MCM-41, b) 0.25-Cr/DHS, c) 0.5-Cr/DHS, d) 1.0-Cr/DHS, e)
2.0-Cr/DHS.

Comment to the figure

The figure shows IR spectra of species irreversibly adsorbed at room temperature in the wavenumber
region where absorption bands due to the deformation modes of adsorbed NHs; and NH4" species.

After outgassing, the IR spectrum of NH; adsorbed on the bare MCM-41 (curve a) shows only a very
weak 8asym(NHs) absorption band at ca. 1600 cm™, which is assigned to some residual NH; adsorbed on
defects. A significantly more intense band at ca. 1613 cm™, due to ammonia molecules adsorbed on surface
Cr centres, dominated the spectra obtained for the various catalysts. Additionally, a broad absorption band
with maximum at ca. 1445 cm™ and a shoulder at ca. 1410 cm™ is observed, due to the antisymmetric
bending modes of adsorbed ammonium ions.5" 52 The deviation of the NH," ion from the tetrahedral
symmetry because of the interaction with the surface rendered partly IR active also the symmetric bending
mode, producing the very weak band at ca. 1700 cm™.

Finally, the spectra are characterized by a weak band at 1552 cm, that can be attributed to the §(NH>)
mode of Si—-NH, species formed by reaction of NHz with strained Si-O-Si (and/or Si-O-Cr) bridges.>** The
other product of this reaction should be Si-OH (and/or Cr-OH) species, likely contributing to the broad and
complex band in the voy region. On pure silicas, such strained bridges are usually expected to be formed by
outgassing at higher temperature® and then, as for the Brgnsted acid sites, their formation was favoured
by the presence of supported metal ions, as observed also in the case of Ti*/MCM-41 prepared by the DHS
method.** The intensity of the 1552 cm™ band reached a maximum for the 0.50-Cr/DHS and 1.0-Cr/DHS
catalysts and then declined, following a trend different from both the 1613 and 1445 cm™ bands, and not
simply related neither to the chromium loading nor to the relative abundance of ordered or disordered
porosity in the silica matrix (see Fig. 1A and Table 1 in the main text). It is then proposed that the formation
of strained siloxane bridges occurred only in the neighborhood of a limited amount of Cr species.
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Fig. S6: CsHs conversion vs. reaction time for ODH of propane on the Cr/DHS catalysts
(C3Hg:C02:02:N2=15:30:3:52, T=873 K, w=200 h?) in the as-prepared state (open

symbols) and after reaction and subsequent treatment in flowing O, at 873 K for 6h
(full symbols): a) 0.25-Cr/DHS, b) 0.5-Cr/DHS, c) 1.0-Cr/DHS, d) 2.0-Cr/DHS.
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Fig. S7: Selectivity to CsHe, CoHs and total olefin vs. reaction time for ODH of propane on the

2.0-Cr /DHS catalyst (T=873 K, w= 200 h). Left panel: selectivity to C3He (curves al,b1)
and CzHs (curves a2,b2). Right panel: selectivity to total olefins (curves a3,b3). Blue
curves: reaction mixture with only CO; as oxidant (CsHs:CO2:N,=15:30:55, curves al,a2
and a3). Orange curves: reaction mixture as CO,+0O, as oxidant
(CsHs:C02:0,2:N»=15:30:3:52, curves b1,b2,b3).
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Fig. S8: Yields of CsHe, CoHs and total olefin vs. reaction time for ODH of propane on the
2.0-Cr /DHS catalyst (T=873 K, w= 200 h'). Left panel: yield of CsHe¢ (curves al,b1l)
and CyHs (curves a2,b2). Right panel: yield of total olefins (curves a3,b3). Blue
curves: reaction mixture with only CO; as oxidant (CsHs:CO2:N,=15:30:55, curves al,a2
and a3). Orange curves: reaction mixture as CO,+0O; as oxidant
(CsHs:C02:02:N2=15:30:3:52, curves b1,b2,b3).



