Strong π -Acceptor Sulfonated Phosphines in Biphasic Rhodium catalyzed Hydroformylation of Polar Alkenes

Daniel Peral, Daniel Herrera, Julio Real, Teresa Flor and J. Carles Bayón*

Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Phone: (+34)935812889; e-mail: joancarles.bayon@uab.cat

Table of Contents:

NMR spectra of Danphos type phosphines	2
IR spectra of Danphos type phosphines	8
HRMS spectra of Danphos type phosphines	9
³¹ P{ ¹ H} NMR spectra of Danphos selenides	11
Reaction profile of the biphasic hydroformylation of vinyl acetate using 4 equivalents of the sulfonated phosphines	13
Reaction profile of the biphasic hydroformylation of vinyl acetate using 20 equivalents of the sulfonated phosphines	13
Reaction profile of the recycling experiments of the biphasic hydroformylation of vinyl acetate using Danphos and <i>p</i> -Danphos	14
Reaction profile of the biphasic hydroformylation of allyl cyanide using 20 equivalents of the sulfonated phosphines	15
Reaction profile of the recycling experiments of the biphasic hydroformylation of allyl cyanide using Danphos and <i>p</i> -Danphos	16

NMR spectra of Danphos type phosphines

Danphos

1 .																				
50	45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50

¹⁹F{¹H} NMR: 376.50 MHz, D₂O

p-Danphos

¹⁹F{¹H} NMR: 376.50 MHz, D₂O

o-Danphos

7

IR(ATR) spectra of Danphos type phosphine

p-Danphos

HRMS spectra of Danphos type phosphines

Danphos: HRMS: ESI⁻ m/z

p-Danphos: HRMS: ESI⁻ *m/z*

o-Danphos: HRMS: ESI⁻ m/z

³¹P{¹H} NMR spectra of Danphos selenides

37.5

35.0

32.5

30.0

o-Danphos Selenide: ³¹P{¹H} NMR spectrum

Reaction profile of the biphasic hydroformylation of vinyl acetate using 4 equivalents of the sulfonated phosphines.

Figure. Substrate consumed (mmol) *versus* time (min) in the biphasic hydroformylation of vinyl acetate with sulfonated phosphines. Conditions: [Rh]:[L]:[substrate] = 1:4:2500 (43.4 mmol vinyl acetate), 2 ml H₂O, 6 ml toluene, 80 °C, 30 bar CO:H₂ (1:1), 16h.

Reaction profile of the biphasic hydroformylation of vinyl acetate using 20 equivalents of the sulfonated phosphines.

Figure. Substrate consumed (mmol) *versus* time (min) in the biphasic hydroformylation of vinyl acetate with sulfonated phosphines. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol vinyl acetate), 3 ml toluene, 5 ml H₂O, 80 °C, 30 bar CO:H₂ (1:1).

Reaction profile of the recycling experiments of the biphasic hydroformylation of vinyl acetate using Danphos and *p*-Danphos

Figure. Substrate consumed (mmol) *versus* time (min) in the recycling experiments of the biphasic hydroformylation of vinyl acetate with Danphos phosphine. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol vinyl acetate), 3 ml toluene, 5 ml H₂O, 80 °C, 30 bar CO:H₂ (1:1).

Figure. Substrate consumed (mmol) *versus* time (min) in the recycling experiments of the biphasic hydroformylation of vinyl acetate with *p*-Danphos phosphine. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol vinyl acetate), 3 ml toluene, 5 ml H₂O, 80 °C, 30 bar CO:H₂ (1:1).

Reaction profile of the biphasic hydroformylation of allyl cyanide using 20 equivalents of the sulfonated phosphines.

Figure. Substrate consumed (mmol) *versus* time (min) in the biphasic hydroformylation of allyl cyanide with sulfonated phosphines. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol allyl cyanide), 3 ml toluene, 5 ml H₂O, 80°C, 30 bar CO:H₂ (1:1).

Reaction profile of the recycling experiments of the biphasic hydroformylation of allyl cyanide using Danphos and *p*-Danphos

Figure. Substrate consumed (mmol) *versus* time (min) in the recycling experiments of the biphasic hydroformylation of allyl cyanide with Danphos phosphine. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol allyl cyanide), 3 ml toluene, 5 ml H₂O, 80 °C, 30 bar CO:H₂ (1:1).

Figure. Substrate consumed (mmol) *versus* time (min) in the recycling experiments of the biphasic hydroformylation of allyl cyanide with *p*-Danphos phosphine. Conditions: [Rh]:[L]:[substrate] = 1:20:2500 (43.4 mmol allyl cyanide), 3 ml toluene, 5 ml H₂O, 80 °C, 30 bar CO:H₂ (1:1).