Supporting information

A heterostructured TiO_2 - C_3N_4 support for gold catalysts: a superior preferential oxidation of CO in the presence of H_2 under visible light irradiation or not

Kai Yang, Chao Meng, Liuliu Lin, Xiaoying Peng, Xun Chen, Xuxu Wang, Wenxin Dai^{*}, Xianzhi Fu

Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and

Environment, Fuzhou University, Fuzhou, 350002, China

*Corresponding author: Wenxin Dai

Tel & Fax: +86-591-83779083

E-mail: daiwenxin@fzu.edu.cn

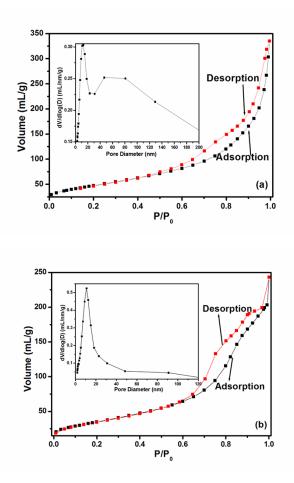


Fig. 1s N₂ adsorption-desorption isotherms and the BJH pore size distributions (inset) plots of Au/TiO₂(a) and Au/TiO₂-C₃N₄ (b) samples.

Table 1s The results of N ₂ physical adsorption of Au/TiO ₂ and Au/TiO ₂ -C ₃ N ₄ samples.				
	Samples	BET Surface Area (m ² /g)	Pore Radius (nm)	
	Au/TiO ₂	142.9	11.7	
	Au/TiO_2 - C_3N_4	128.4	11.4	

The Barrett-Joyner-Halenda (BJH) pore size distribution (inset of Fig.1s) obtained from the

isotherm indicates the pores ranging from 10 nm to 20 nm. Table 1s shows that the Au/TiO₂ and Au/TiO₂-C₃N₄ have higher values of specific surface areas, specific pore volumes. N₂ adsorption analysis and the BET specific surface area of Au/TiO2 after the C3N4 composition decreased,