Electronic Supporting Information

Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors

Bingbing Lai,^a Zhipeng Huang,^a Zhifang, Jia,^a Rongxian Bai^{a,} * and Yanlong Gu^{a, b} *

^aHubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory for Large-Format Battery, Materials and System, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China. Fax: (0)86-(0)27-87 54 45 32; E-mail: klgyl@hust.edu.cn ^bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou, 730000 (P.R. China)

Table of Contents

1. General remarks:	S2
2. Elemental and XRD analysis of the catalysts	S2
3. IR spectra of acetylacetone complexs	S3
4. Experimental Section	S5
4.1 General procedure of the catalysts	S5
5. Spectroscopic Data for the New Compounds	S5
6. Spectroscopic Data for the Old Compounds	S9
7. References	S65

1. General remarks:

Zinc(II) acetylacetonate, cupric(II) acetylacetonate, ruthenium (III) 2,4-pentanedionate, 4-fluorophenylacetylene and *p*-methoxybenzaldehyde were purchased from Heowns Biochem Technologies Co. Ltd. Benzyl mercaptan, 4-tert-butylphenylacetylene, (2-bromoethyl)benzene, p-anisidine, benzylamine, furfurylamine, allylamine, 2-(1-cyclohexenyl)ethylamine, 2-carboxy-3,4-dimethoxybenzaldehyde, p-tolualdehyde and 4-chlorobenzaldehyde were purchased from Alfa Aesar Chemical Company. 1-Hexadecylamine, iodoethane and 4-aminoacetophenone were purchased from Aladdin Industrial Corporation. Sodium azide was purchased from Tianjing 4-Ethylphenylacetylene, Damaotie Chemical Company. 1-eth-1-ynyl-4-propylbenzene, 1-n-butyl-4-eth-1-ynylbenzene, 3-aminophenylacetylene, benzhydrol, 2-carboxybenzaldehyde, 1-ethynyl-4-pentylbenzene, 4-aminophenyl boronic acid pinacol ester were purchased from Energy Chemical. p-Toluidine was purchased from Shanghai Jinshantingxin Industry Co. Ltd. 4-Bromoaniline, 4-fluoroaniline, 4-amino benzoic acid ethyl ester and tryptamine were purchased from Shanghai Shaoyuan Co., Ltd. 3,4-Dimethoxyaniline and 1-Boc-6-aminoindole were purchased from Adamas Reagent. Co., Ltd. 4-Morpholinoaniline and 2-methylallylamine were purchased from Accella Chemical Company. 2-Propynylamine was purchased from ChangCheng Chemical Company. 4-(1-Propenyl)-1,2-dimethoxybenzene was purchased from TCI Chemical Company. TEOS, MTPMS, Zn(Cl)₂, nitromethane, EtOH, phenylacetylene, benzyl bromide, 4-nitrobenzyl bromide, benzyl chloride, 4-nitroaniline, 1-bromooctane, 1-bromohexane, n-butylamine, cyclohexane and cyclohexane were purchased from Sinopharm Chemical Reagent Co. Ltd.

2. Elemental and XRD analysis of the catalysts

Name	Weight[mg]	Method	N[%]	C[%]	H[%]	S [%]
HMS	2.3360	2mg80s	0.00	14.22	2.955	7.086
HMS-acac	2.2470	2mg80s	0.40	20.93	3.636	5.110

Table S1. Elemental analysis of the catalysts.

Sufur loading =2.21 mmol/g. acac loading = 0.67mmol/g.

Figure S1. XRD pattern of a) HMS-SH, b) HMS-acac, c) Fresh HMS-DP-Cu **II**, d) Resycled HMS-DP-Cu **II**.

3. IR spectra of acetylacetone complexs

Figure S2. IR spectrogram of Ru(acac)₃.

Figure S3. IR spectrogram of Cu(acac)₂.

Figure S4. IR spectrogram of Zn(acac)₂.

Figure S5. IR spectrogram of HMS-DP-Ru after six run.

4. Experimental Section

4.1 General procedure of the catalysts

Preparation of the HMS-DP-Cu I:

HMS-DP-Cu I was synthesized as same as HMS-DP-Cu II that we have mentioned before except the mass ratio of the HMS-acac and $Cu(acac)_2$ was 1:1 and the reaction time was 12 h.

Preparation of the HMS-DP-Zn:

The method of prepare HMS-DP-Zn was as same as HMS-DP-Cu II.

Preparation of the HMS-DP-Ru:

HMS-DP-Ru was synthesized as same as HMS-DP-Cu I that we have mentioned before except the mass ratio of the HMS-acac and $Cu(acac)_2$ was 3:1.

Preparation of the HMS-DP-Cu II@IL

To a 100 mL round flask, 0.6 g of ionic liquid [OMIm]NTf₂ was dissolved in 20 mL EA, then 2 g of the HNM-DP-Cu was added and the mixture was stirred for 10 min at room temperature. Removal the EA by rotary evaporator at 40 $^{\circ}$ C, then the flowable solid HMS-DP-Cu II@IL was obtained.

Procedure for the synthesis of 1a^[1]

In a V-type reaction flask equipped with magnetic stirring, vinyl n-butyl ether (100.0 mg, 1.0 mmol), was mixed with acetylacetone (200.1 mg, 2.0 mmol) and formaldehyde aqueous solution (37 wt%, 202.8 mg, 2.5 mmol) under air. The mixture was stirred at 80 °C for 7 h. After reaction, the reaction mixture was cooled to room temperature. After addition of brine (5.0 mL), the aqueous phase was extracted with a mixture of ethyl acetate and heptane (v/v=1/1, 5.0 mL*3). The obtained organic phases were then combined together and dried with anhydrous Na₂SO₄. After evaporation under reduced pressure, the desired product 1c was obtained by silica gel column chromatography using a mixed solution of ethyl acetate and petroleum ether as eluting solvent (the ratio of ethyl acetate/petroleum ether is 1/20); yield: 184.6 mg (87%).

5. Spectroscopic Data for the New Compounds

3-(Nitromethyl)-2-phenylisoindolin-1-one (10a): Light yellow solid, mp: 139-141 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.95 (d, *J* = 4.0 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.51-7.45 (m, 3H), 7.29 (q, *J* = 8.0 Hz, 1H), 5.81 (dd, *J_a* = 4.0 Hz, *J_b*=8.0 Hz, 1H), 4.82 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.49 ppm (dd, *J_a* = 8.0 Hz, *J_b* = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.6, 140.5, 132.9, 131.8, 130.6, 130.0, 129.7, 126.8, 126.5, 124.7, 123.9, 122.6, 122.2, 75.8, 75.4, 58.0 ppm. IR: *v* = 3053, 3026, 2957, 2901, 2851, 1758, 1686, 1597, 1548, 1496, 1461, 1384, 1296, 1215, 1159, 1105, 766, 746, 694, 616, 499 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₅H₁₂N₂NaO₃: 291.0746 [M+Na]⁺; found: 291.0731.

3-(Nitromethyl)-2-(*p***-tolyl)isoindolin-1-one (10b):** Light yellow solid, mp: 144-146 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.92 (d, *J* = 8.0 Hz, 1H), 7.59 (sext, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.73 (t, *J* = 4.0 Hz, 1H), 4.79 (dd, *J_a* = 4.0 Hz, *J_b* = 16.0 Hz, 1H), 4.46 (q, *J* = 8.0 Hz, 1H), 2.36 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.6, 140.5, 136.8, 133.0, 132.7, 132.0, 130.2, 129.9, 124.6, 124.0, 122.6, 75.4, 58.2, 21.1 ppm; IR: *v* = 3370, 3062, 3026, 2956, 2915, 2854, 1706, 1689, 1616, 1547, 1514, 1467, 1419, 1387, 1297,

1210, 1152, 819, 747, 686, 611, 507 cm⁻¹. HRMS (ESI): m/z: calcd for C₁₆H₁₄N₂NaO₃: 305.0902 [M+Na]⁺; found: 305.0900.

2-(4-Bromophenyl)-3-(nitromethyl)isoindolin-1-one (10c): Light yellow solid, mp: 114-116 °C, ¹H NMR (400 MHz, DMSO, 25 °C): $\delta = 7.84$ (t, J = 8.0 Hz, 2H), 7.75 (t, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.63-7.60 (m, 3H), 6.12 (t, J = 3.6 Hz, 1H), 5.31 (dd, $J_a = 4.0$ Hz, $J_b=16.0$ Hz, 1H), 5.05 ppm (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1H). ¹³C NMR (100 MHz, DMSO, 25 °C) $\delta = 166.6$, 141.3, 136.0, 133.2, 132.4, 131.9, 129.9, 126.5, 124.0, 123.8, 118.9, 74.9, 58.5 ppm. IR: v = 3055, 2921, 1706, 1553, 1493, 1470, 1411, 1375, 1300, 1217, 1153, 1105, 1071, 1011, 833, 747, 690, 600, 504 cm⁻¹. HRMS (ESI): m/z: calcd for C₁₅H₁₁BrN₂NaO₃: 368.9851 [M+Na]⁺; found: 368.9848.

2-(4-Fluorophenyl)-3-(nitromethyl)isoindolin-1-one (10d): Light yellow solid, mp: 137-139 °C, ¹H NMR (400 MHz, DMSO, 25 °C): δ = 7.86-7.81 (m, 2H), 7.75 (t, *J* = 8.0 Hz, 1H), 7.67-7.60 (m, 3H), 7.37-7.32 (m, 2H), 6.09 (t, *J* = 4.0 Hz, 1H), 5.28 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 5.04 ppm (dd, *J_a* = 4.0 Hz, *J_b* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 166.7, 161.74, 159.3, 141.3, 133.0, 132.8, 132.8, 132.0, 129.8, 127.3, 127.2, 123.9, 123.8, 116.4, 116.2, 75.1, 59.0 ppm. ¹⁹F NMR (377 MHz, DMSO, 25°C): δ = -115.8 ppm (sex, *J* = 3.8 Hz, 1F). IR: *v* = 3117, 3077, 3021, 2962, 2925, 1772, 1685, 1598, 1551, 1509, 1470, 1380, 1337, 1224, 1161, 1102, 1018, 848, 813, 754, 694, 659, 605, 527, 503 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₅H₁₁FN₂NaO₃: 309.0651 [M+Na] ⁺; found: 309.0645.

2-(4-Methoxyphenyl)-3-(nitromethyl)isoindolin-1-one (10e): Light yellow solid, mp: 138-140 °C, ¹H NMR (400 MHz, DMSO, 25 °C): δ = 7.83-7.80 (m, 2H), 7.73 (t, *J* = 4.0 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 12.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 5.99 (t, *J* = 4.0 Hz, 1H), 5.24 (dd, *J_a* = 4.0 Hz, *J_b* = 16.0 Hz, 1H), 4.97 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 3.79 ppm (s, 3H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 166.6, 158.0, 145.7, 141.4, 135.1, 132.8, 132.3, 130.5, 129.7, 129.2, 126.9, 125.7, 123.8, 123.6, 114.7, 77.1, 77.0, 75.2, 59.1, 55.8 ppm. IR: *v* = 2919, 2843, 1774, 1678, 1552, 1514, 1466, 1423, 1380, 1297, 1249, 1159, 1109, 1026, 826, 744, 689, 611, 520 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₆H₁₄N₂NaO₄: 321.0851 [M+Na] ⁺; found: 321.0842.

3-(Nitromethyl)-2-(4-nitrophenyl)isoindolin-1-one (10f): Light yellow solid, mp: 140-143 °C, 1H NMR (400 MHz, DMSO, 25 °C): δ = 8.38 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 12.0 Hz, 2H), 7.90-7.85 (m, 2H), 7.83-7.78 (m, 1H), 7.65 (q, *J* = 8.0 Hz, 1H), 6.31-6.29 (m, 1H), 5.54-5.38 (m, 1H), 5.15-5.06 ppm (m, 1H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 169.6, 167.0, 145.7, 144.3, 142.8, 141.3, 135.1, 133.8, 131.4, 130.5, 130.1, 126.1, 125.7, 125.2, 124.3, 123.9, 123.6, 123.4, 77.1, 77.0, 74.6, 58.1 ppm. IR: v = 3118, 3084, 2926, 2854, 1775, 1714, 1597, 1556, 1517, 1375, 1341, 1300, 1219, 1108, 1026, 851, 751, 691, 602 cm-1. HRMS (ESI): m/z: calcd for C₁₅H₁₁N₃NaO₅: 336.0596 [M+Na] ⁺; found: 336.0585.

Methyl 4-(1-(nitromethyl)-3-oxoisoindolin-2-yl)benzoate (10g): Brown oil, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 8.08$ (dd, $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.54 (d, J = 8.0 Hz, 1H), 4.95 (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1H), 4.83 (dd, $J_a = 8.0$ Hz, $J_b = 12.0$ Hz, 1H), 3.99 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 167.5$, 166.8, 166.6, 149.5, 139.1, 133.4, 132.0, 131.6, 131.4, 128.7, 127.8, 113.8, 112.6, 79.4, 60.3, 53.2, 52.7 ppm; IR: v = 3480, 3372, 3228, 2982, 2957, 1710, 1606, 1555, 1523, 1437, 1371, 1278, 1176, 1108, 1021, 843, 770, 703, 617, 511 cm⁻¹. HRMS (ESI): m/z: calcd for C₁₇H₁₄N₂NaO₅: 349.0800 [M+Na]⁺; found: 349.0795.

2-(4-Acetylphenyl)-3-(nitromethyl)isoindolin-1-one (10h): Light yellow solid, mp: 120-122 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 8.09$ (d, J = 12.0 Hz, 2H), 7.97 (d, J = 8.0 Hz, 1H), 7.77-7.75 (m, 2H), 7.70 (t, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 5.92 (dd,

 $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 1 H), 4.89 (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1 H), 4.55 (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1 H), 2.63 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 196.9$, 166.6, 140.3, 140.1, 134.9, 134.4, 133.5, 131.4, 130.8, 130.7, 130.2, 129.9, 125.0, 122.6, 122.2, 113.7, 75.3, 57.4, 26.6 ppm. IR: v = 3476, 3364, 3237, 3059, 3012, 2924, 2853, 1772, 1701, 1671, 1598, 1553, 1514, 1422, 1374, 1272, 1218, 1177, 1106, 1025, 958, 837, 752, 692, 591, 496 cm⁻¹. HRMS (ESI): m/z: calcd for C₁₇H₁₄N₂NaO₄: 333.0851 [M+Na]⁺; found: 333.0842.

2-(3,4-Dimethoxyphenyl)-3-(nitromethyl)isoindolin-1-one (10i): Light yellow solid, mp: 133-135 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.92 (d, *J* = 8.0 Hz, 1H), 7.66-7.56 (m, 2H), 7.49 (d, *J* = 4.0 Hz, 1H), 7.19 (s, 1H), 6.92 (s, 2H), 5.71 (q, *J* = 4.0 Hz, 1H), 4.82 (dd, *J_a* = 4.0 Hz, *J_b* = 16.0 Hz, 1H), 4.52 (dd, *J_a* = 8.0 Hz, *J_b* = 16.0 Hz, 1H), 3.90 ppm (d, *J* = 4.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.8, 149.6, 148.0, 140.4, 132.7, 131.9, 129.9, 128.6, 124.5, 122.5, 116.3, 111.5, 108.9, 75.5, 58.8, 56.1 ppm. IR: *v* = 3032, 2968, 2940, 2913, 2849, 1700, 1595, 1551, 1515, 1456, 1391, 1325, 1271, 1239, 1217, 1146, 1102, 1022, 847, 793, 749, 688, 617, 578 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₇H₁₆N₂NaO₅: 351.0957 [M+Na] ⁺; found: 351.0951.

2-(4-Morpholinophenyl)-3-(nitromethyl)isoindolin-1-one (**10j**): Brown oil, ¹H NMR (400 MHz, DMSO, 25 °C): δ = 7.79 (t, *J* = 8.0 Hz, 2H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 12.0 Hz, 2H), 5.97 (t, *J* = 4.0 Hz, 1H), 5.23 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.95 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 3.75 (t, *J* = 8.0 Hz, 4H), 3.15 ppm (t, *J* = 4.0 Hz, 4H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 166.6, 149.8, 141.4, 132.7, 132.4, 129.7, 127.8, 126.2, 123.7, 115.6, 75.2, 66.6, 59.0, 48.8 ppm. IR: *v* = 2962, 2922, 2854, 1694, 1613, 1552, 1517, 1452, 1378, 1301, 1262, 1235, 1116, 1051, 1023, 929, 821, 799, 746, 691, 643, 524 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₉H₁₉N₃NaO₄: 376.1273 [M+Na] ⁺; found: 376.1269.

tert-Butyl 6-(1-(nitromethyl)-3-oxoisoindolin-2-yl)-1H-indole-1-carboxylate (10k): Light yellow solid, mp: 164-166 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 8.36$ (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.65-7.60 (m, 4H), 7.51 (d, J = 8.0 Hz, 1H), 7.40 (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.83 (dd, $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 1H), 4.86 (dd, $J_a = 4.0$ Hz, $J_b = 16.0$ Hz, 1H), 4.52 (dd, $J_a = 8.0$ Hz, $J_b = 16.0$ Hz, 1H), 1.67 ppm (s, 9H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 166.8$, 149.5, 140.5, 132.7, 132.0, 131.9, 129.9, 129.4, 128.3, 127.9, 127.1, 124.7, 122.6, 121.8, 112.0, 107.1, 75.4, 58.9, 28.2 ppm. IR: v = 2978, 2928, 1776, 1733, 1703, 1616, 1555, 1483, 1444, 1379, 1342, 1257, 1210, 1157, 1128, 1025, 851, 817, 768, 745, 690, 612 cm⁻¹. HRMS (ESI): m/z: calcd for C₂₂H₂₁N₃NaO₅: 430.1379 [M+Na]⁺; found: 430.1370.

3-(Nitromethyl)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isoindolin-1-one (10): Light yellow solid, mp: 144-146 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.94 (t, *J* = 8.0 Hz, 3H), 7.75 (t, *J* = 8.0 Hz, 1H), 7.62-7.60 (m, 3H), 7.51 (t, *J* = 8.0 Hz, 1H), 5.86 (dd, *J_a* = 4.0 Hz, *J_b* = 8.0 Hz, 1H), 4.86-4.83 (m, 1H), 4.48 (dd, *J_a* = 8.0 Hz, *J_b* = 16.0 Hz, 1H), 1.36 ppm (s, 12H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.6, 144.4, 140.5, 138.2, 136.2, 134.9, 133.1, 131.7, 130.6, 130.0, 129.7, 126.5, 124.8, 122.6, 122.3, 122.2, 84.0, 75.8, 75.3, 75.0, 63.7, 57.6, 24.9, 24.8 ppm. IR: *v* = 2980, 2928, 1776, 1706, 1606, 1557, 1469, 1363, 1273, 1216, 1145, 1093, 1025, 961, 858, 746, 689, 660 cm⁻¹; HRMS (ESI): *m/z*: calcd for C₂₁H₂₃BN₂NaO₅: 417.1598 [M+Na] ⁺; found: 417.1592.

2-*n***-Butyl-3-(nitromethyl)isoindolin-1-one (10m):** Brown oil, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.85 (d, *J* = 4.0 Hz, 1H), 7.56 (sex, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 4.0 HZ, 1H), 5.25 (t, *J* = 80 Hz, 1H), 4.80 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.71 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.02 (quintet, *J* = 8.0 Hz, 1H), 3.19-3.12(m, 1H), 1.70-1.54 (m, 2H), 1.36 (q, *J* = 8.0 Hz, 2H), 0.94 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 168.0, 140.7, 132.1, 132.1, 129.5, 124.1, 122.4,

76.4, 56.8, 40.4, 30.3, 20.0, 13.7 ppm. IR: v = 3025, 2961, 2932, 2971, 1692, 1553, 1468, 1411, 1377, 1302, 1204, 1095, 798, 747, 693, 616, 534 cm⁻¹. HRMS (ESI): m/z: calcd for C₁₃H₁₆N₂NaO₃: 271.1059 [M+Na]⁺; found: 271.1061.

2-Benzyl-3-(nitromethyl)isoindolin-1-one (10n): Light yellow solid, mp: 73-75 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.93 (d, *J* = 4.0 Hz, 1H), 7.51 (q. *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.35-7.26 (m, 5H), 5.27 (d, *J* = 16.0 Hz, 1H), 5.05 (t, *J* = 4.0 Hz, 1H), 4.70 (dd, *J_a* = 8.0 Hz, *J_b* = 16.0 Hz, 1H), 4.60(dd, *J_a* = 8.0 Hz, *J_b* = 16.0 Hz, 1H), 4.39 ppm (d, *J* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 168.3, 140.9, 136.3, 132.5, 131.7, 129.7, 129.1, 128.1, 128.0, 124.5, 122.5, 76.0, 56.8, 44.7 ppm. IR: *v* = 3061, 3031, 2924, 2956, 1696, 1616, 1553, 1469, 1405, 1377, 1295, 1199, 1147, 1098, 1078, 979, 747, 699, 617, 553, 512 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₆H₁₄N₂NaO₃: 305.0902 [M+Na]⁺; found: 305.0900.

2-Cyclohexyl-3-(nitromethyl)isoindolin-1-one (100): Brown oil, ¹H NMR (400 MHz, DMSO, 25 °C): $\delta = 7.65 \cdot 7.59$ (m, 3H), 7.53 \cdot 7.49 (m, 1H), 5.39 (dd, $J_a = 4.0$ Hz, $J_b = 12.0$ Hz, 1H), 5.26 \cdot 5.19 (m, 2H), 3.72 \cdot 3.66 (m, 1H), 2.12 \cdot 2.02 (m, 1H), 1.84 \cdot 1.77 (m, 4H), 1.63 (d, J = 12.0 Hz, 1H), 1.37 \cdot 1.27 (m, 2H), 1.23 \cdot 1.14 ppm (m, 2H). ¹³C NMR (100 MHz, DMSO, 25 °C) $\delta = 168.0$, 142.5, 133.0, 132.1, 129.2, 123.4, 123.1, 75.9, 57.8, 53.8, 30.4, 30.2, 26.2, 26.1, 25.4 ppm. IR: v = 2934, 2858, 1681, 1552, 1470, 1402, 1375, 1328, 1220, 1128, 1024, 893, 800, 753, 695, 616, 541 cm⁻¹. HRMS (ESI): *m*/z: calcd for C₁₅H₁₈N₂NaO₃: 297.1215 [M+Na] ⁺; found: 297.1200.

2-(2-(1H-Indol-3-yl)ethyl)-3-(nitromethyl)isoindolin-1-one (10p): Brown oil, ¹H NMR (400 MHz, DMSO, 25 °C): δ = 10.85 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.66-7.62 (m, 2H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.21 (s, 1H), 7.10 (t, *J* = 8.0 Hz, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 5.36 (dd, *J_a* = 4.0 Hz, *J_b* = 16.0 Hz, 1H), 5.30 (q, *J* = 4.0 Hz, 2H), 4.23-4.16 (m, 1H), 3.61-3.54 (m, 1H), 3.19-3.12 (m, 1H), 3.03-2.95 ppm (m, 1H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 167.8, 142.0, 136.7, 132.5, 132.2, 129.4, 127.6, 123.7, 123.3, 123.2, 121.5, 118.9, 118.8, 111.9, 111.6, 75.1, 57.5, 41.1, 24.3 ppm. IR: *v* = 3412, 3306, 3054, 2923, 2855, 1773, 1688, 1618, 1553, 1457, 1412, 1375, 1227, 1097, 1022, 746, 692, 613, 426 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₉H₁₇N₃NaO₃: 358.1168 [M+Na]⁺; found: 358.1153.

2-(Furan-2-ylmethyl)-3-(nitromethyl)isoindolin-1-one (10q): Light yellow solid, mp: 89-91 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.86 (d, *J* = 8.0 Hz, 1H), 7.55 (dt, *J_a* = 8.0 Hz, *J_b* = 24.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35 (s, 1H), 6.35-6.33 (m, 2H), 5.17 (d, *J* = 16.0 Hz, 1H), 5.11 (t, *J_a* = 8.0 Hz, *J_b* = 12.0 Hz, 1H), 4.87 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.74 (dd, *J_a* = 8.0 Hz, *J_b* = 16.0 Hz, 1H), 4.48 ppm (d, *J* = 16.0 Hz, 1H).¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 167.9, 149.5, 142.9, 140.9, 132.5, 131.5, 129.6, 124.4, 122.5, 110.7, 109.2, 75.7, 57.2, 37.4 ppm. IR: *v* = 3156, 3103, 3045, 2988, 2919, 2854, 1692, 1617, 1552, 1469, 1407, 1384, 1355, 1278, 1232, 1191, 1143, 1073, 1011, 915, 797, 749, 689, 616, 564, 533 cm⁻¹. HRMS (ESI): *m*/*z*: calcd for C₁₄H₁₂N₂NaO₄: 295.0695 [M+Na]⁺; found: 295.0694.

2-(3-Ethynylphenyl)-3-(nitromethyl)isoindolin-1-one (10r): Light yellow solid, mp: 121-123 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.94 (d, *J* = 8.0 Hz, 1H), 7.67-7.64 (m, 2H), 7.61-7.58 (m, 2H), 7.52-7.49 (m, 1H), 7.45-7.40 (m, 2H), 5.79 (dd, *J*_a = 4.0 Hz, *J*_b = 8.0 Hz, 1H), 4.84 (dd, *J*_a = 4.0 Hz, *J*_b = 16.0 Hz, 1H), 4.84 (dd, *J*_a = 4.0 Hz, *J*_b = 16.0 Hz, 1H), 4.51 (dd, *J*_a = 8.0 Hz, *J*_b = 16.0 Hz, 1H), 3.14 ppm (s, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.6, 140.3, 135.8, 133.1, 131.6, 130.3, 130.0, 129.7, 127.0, 124.8, 124.4, 123.6, 122.6, 82.6, 78.6, 75.2, 57.9 ppm. IR: *v* = 3291, 3071, 2958, 2924, 2855, 1774, 1706, 1600, 1554, 1484, 1431, 1376, 1216, 1154, 1104, 792, 747, 690, 618, 530 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₇H₁₂N₂NaO₃: 315.0746 [M+Na]⁺; found: 315.0739.

3-(Nitromethyl)-2-(prop-2-yn-1-yl)isoindolin-1-one (10s): Brown oil, ¹H NMR (400 MHz, DMSO,

25 °C): δ = 7.76 (t, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 8.0 Hz, 1H), 5.38-5.37 (m, 2H), 5.33-5.51 (m, 1H), 4.63 (dd , *J_a* = 2.4 Hz, *J_b* = 18 Hz, 1H), 4.26 (dd, *J_a* = 2.4 Hz, *J_b* = 18.0 Hz, 1H), 3.30 ppm (t, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO, 25 °C) δ = 167.4, 142.0, 132.8, 131.6, 129.6, 123.8, 123.6, 79.2, 75.3, 74.7, 57.4, 30.2 ppm. IR: *v* = 3293, 2922, 1775, 1701, 1617, 1555, 1470, 1402, 1378, 1295, 1151, 748, 693 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₂H₁₀N₂NaO₃: 253.0589 [M+Na] ⁺; found: 253.0593.

2-Ally1-3-(nitromethyl)isoindolin-1-one (10t): Colorless oil, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.68$ (d, J = 8.0 Hz, 1H), 7.57 (sextet, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 5.88-5.78 (m, 1H), 5.28 (d, J = 8.0 Hz, 1H), 5.24-5.21 (m, 2H), 4.82 (dd, $J_a = 8.0$ Hz, $J_b = 16.0$ Hz, 1H), 4.69 (dd, $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 1H), 4.61 (dd, $J_a = 8.0$ Hz, $J_b = 16.0$ Hz, 1H), 3.89 ppm (dd, $J_a = 8.0$ Hz, $J_b = 16.0$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 167.9$, 140.9, 132.5, 132.4, 131.7, 129.6, 124.3, 122.5, 118.8, 76.1, 57.0, 43.6 ppm. IR: v = 3083, 3021, 2982, 2921, 1774, 1695, 1617, 1553, 1470, 1403, 1378, 1294, 1203, 1099, 996, 931, 798, 748, 694, 613, 534 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₂H₁₂N₂NaO₃: 255.0746 [M+Na]⁺; found: 255.0740.

2-(2-Methylallyl)-3-(nitromethyl)isoindolin-1-one (10u): Light yellow solid, mp: 98-100 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.88 (d, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 5.14 (t, *J* = 8.0 Hz, 1H), 4.96 (s, 1H), 4.87-4.82 (m, 2H), 4.68(dd, *J_a* = 5.6 Hz. *J_b* = 13.2 Hz, 1H), 4.57 (d, *J* = 16.0 Hz, 1H), 3.83 (d, *J* = 16.0 Hz, 1H), 1.70 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 168.2, 140.9, 140.4, 132.4, 131.6, 129.6, 124.4, 122.5, 113.8, 75.9, 57.0, 46.8, 19.9 ppm. IR: *v* = 3079, 3048, 2976, 2921, 2857, 1761,1694, 1618, 1552, 1467, 1410, 1382, 1274, 1224, 1190, 1030, 906, 745, 689, 621, 585, 537 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₃H₁₄N₂NaO₃: 269.0902 [M+Na]⁺; found: 269.0897.

2-(2-(Cyclohex-1-en-1-yl)ethyl)-3-(nitromethyl)isoindolin-1-one (10v): Brown oil, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.85 (d, *J* = 8.0 Hz, 1H), 7.56 (dt, *J_a* = 7.2 Hz, *J_b* = 23.2 Hz, 2H), 7.45 (d, *J* = 4.0 Hz, 1H), 5.42 (s, 1H), 5.28 (t, *J* = 5.6 Hz, 1H), 4.78 (dd, *J_a* = 5.6 Hz, *J_b* = 13.2 Hz, 1H), 4.66 (dd, *J_a* = 5.6 Hz, *J_b* = 13.2 Hz, 1H), 4.14 (quintet, *J* = 8.0 Hz, 1H), 3.22-3.15 (m, 1H), 2.35-2.29 (m, 1H), 2.25-2.18 (m, 1H), 2.06-1.99 (m, 2H), 1.94-1.89 (m, 2H), 1.64-1.58 (m, 2H), 1.52-1.47 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 167.9, 140.8, 134.2, 132.1, 132.1, 129.5, 124.1, 124.0, 122.3, 56.9, 39.3, 36.6, 28.1, 25.2, 22.8, 22.2 ppm. IR: *v* = 2928, 2857, 2836, 1693, 1618, 1553, 1468, 1409, 1376, 1300, 1201, 1129, 1098, 1019, 921, 799, 747, 693, 614, 537 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₇H₂₀N₂NaO₃: 323.1372 [M+Na]⁺; found: 323.1767.

6,7-Dimethoxy-3-(nitromethyl)-2-(*p***-tolyl)isoindolin-1-one (10w):** Light yellow solid, mp: 149-151 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.41 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J_a* = 8.0 Hz, *J_b* = 12.0 Hz, 2H), 5.67 (q, *J* = 4.0 Hz, 1H), 4.75 (dd, *J_a* = 4.0 Hz, *J_b* = 12.0 Hz, 1H), 4.42 (dd, *J_a* = 8.0 Hz. *J_b* = 12.0 Hz, 1H), 4.09 (s, 3H), 3.92 (s, 3H), 2.37 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 164.7, 153.8, 147.9, 136.7, 133.4, 133.0, 130.1, 124.0, 117.7, 117.1, 76.0, 62.6, 57.2, 56.7, 21.1 ppm. IR: *v* = 3074, 3009, 2940, 2839, 1690, 1557, 1515, 1493, 1426, 1371, 1264, 1218, 1179, 1059, 1033, 968, 835, 742, 686, 517 cm⁻¹. HRMS (ESI): *m/z*: calcd for C₁₈H₁₈N₂NaO₅: 365.1113 [M+Na] ⁺; found: 365.1107.

6. Spectroscopic Data for the Old Compounds

1-(4-butoxy-2-methylcyclohex-1-en-1-yl)ethan-1-one (1a)^[1] Brown liquid, ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): $\delta = 5.04$ (s, 1H), 3.81-3.77 (m, 1H), 3.57-3.52 (m, 1H), 2.46-2.44 (m, 1H), 2.31-2.28 (m, 1H), 2.21-2.20 (m, 6H), 1.92-1.90 (m, 1H), 1.80-1.78 (m, 1H), 1.56-1.55 (m, 2H),

1.39-1.35 (m, 2H), 0.93-0.90 ppm (m, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 198.88, 161.06, 110.31, 97.43, 68.27, 31.52, 29.26, 26.08, 20.52, 19.07, 18.81, 13.64 ppm.

3-(3-(benzylthio)-4-(phenylthio)butyl)pentane-2,4-dione (2a)^[2] Colorless liquid, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.30-7.22 (m, 10H), 3.84-3.70 (m, 4H), 3.48 (t, *J* = 6.4 Hz, 0.4H), 3.40 (t, *J* = 6.8 Hz, 0.6H), 3.30 (t, *J* = 7.2 Hz, 0.6H), 2.29-2.24 (m. 1H), 2.05-2.00 (m, 6H), 1.90-1.84 (m, 1H), 1.80-1.75 (m, 1H), 1.67-1.62 ppm (m, 1H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 204.0, 191.2, 138.1, 129.1, 129.0, 128.7, 128.6, 127.2, 127.1, 109.3, 67.3, 49.7, 49.4, 36.5, 35.3, 34.8, 32.8, 29.1, 25.4, 24.9, 22.9 ppm.

1-benzyl-4-phenyl-1H-1,2,3-triazole (5a)^[3] White solid, mp: 127-128 °C, ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ = 7.78 (d, *J* = 8.0 Hz, 2H), 7.68 (s, 1H), 7.39-7.34 (m, 5H), 7.30-7.27 (m, 3H), 5.52 ppm (s, 2H). ¹³C NMR (100 MHz, CDCl₃, 25°C) δ = 148.2, 134.8, 130.6, 129.1, 128.8, 128.7, 128.2, 128.0, 125.7, 119.7, 54.2 ppm.

1-Benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (5b)^[3] White solid, mp: 109-110 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.77 (m, 2H), 7.64 (s, 1H), 7.38-7.36 (m, 3H), 7.31-7.29 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 2H), 5.55 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 163.9, 161.4, 147.4, 134.6, 129.2, 128.9, 128.1, 127.5, 127.4, 119.4, 115.9, 115.7, 54.3.

1-Benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (5c)^[4] White solid, mp: 135–136 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.71 (d, *J* = 8.0 Hz, 2H), 7.58 (s, 1H), 7.37-7.34 (m, 3H), 7.30-7.28 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 5.54 (s, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 159.6, 148.1, 134.8, 129.1, 128.7, 128.1, 127.0, 123.3, 118.8, 114.2, 55.3, 54.2.

1-Benzyl-4-(4-(*tert***-butyl)phenyl)-1H-1,2,3-triazole (5d)**^[5] White solid, mp: 113-114 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.73 (d, *J* = 8.0 Hz, 2H), 7.64(s, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.37-7.34 (m, 3H), 7.29-7.27 (m, 2H), 5.55 (s, 2H), 1.32 ppm (s, 9H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 151.3, 148.2, 134.8, 129.1, 128.7, 128.0, 127.7, 125.8, 125.5, 119.3, 54.2, 34.7, 31.3 ppm.

1-Benzyl-4-(4-ethylphenyl)-1H-1,2,3-triazole (5e)^[5] White solid, mp: 148-149 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.71 (d, *J*=12.0 Hz, 2H), 7.63 (s, 1H), 7.31-7.36 (m, 3H), 7.30-7.28 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.54 (s, 2H), 2.65 (q, *J* = 8.0 Hz, 2H), 1.23 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 148.3, 144.4, 134.8, 129.1, 128.8, 128.3, 128.1, 125.7, 119.3, 54.2, 28.7, 15.5 ppm.

1-Benzyl-4-(4-propylphenyl)-1H-1,2,3-triazole (5f)^[5] White solid, mp: 113-115 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.70 (d, *J* = 8.0 Hz, 2H), 7.63 (s, 1H), 7.37-7.34 (m, 3H), 7.29-7.27 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.54 (s, 2H), 2.58 (t, *J* = 8.0 Hz, 2H), 1.64 (sextet, *J* = 8.0 Hz, 2H), 0.93 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 148.3, 142.9, 134.8, 129.1, 128.9, 128.7, 128.0, 128.0, 125.6, 119.3, 54.2, 37.8, 24.5, 13.8 ppm

1-Benzyl-4-(4-butylphenyl)-1H-1,2,3-triazole (**5g**)^[5] White solid, mp: 110-112 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.70 (d, *J*=8.0 Hz, 2H), 7.62 (s, 1H), 7.38-7.36 (m, 3H), 7.30-7.28 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.56 (s, 2H), 2.61 (t, *J* = 8.0 Hz, 2H), 1.60 (quintet, *J* = 8.0 Hz, 2H), 1.35 (q, *J* = 8.0 Hz, 2H), 0.92 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ =148.4, 143.1, 134.8, 129.1, 128.9, 128.8, 128.0, 127.9, 125.6, 119.2, 54.2, 35.4, 33.6, 22.3, 14.0 ppm.

1-Benzyl-4-(4-pentylphenyl)-1H-1,2,3-triazole (5h)^[5] White solid, mp: 102–103 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.70 (d, *J* = 8.0 Hz, 2H), 7.62 (s, 1H), 7.37-7.34 (m, 3H), 7.29-7.27 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.54 (s, 2H), 2.60 (t, *J* = 8.0 Hz, 2H), 1.61 (quintet, *J* = 8.0 Hz, 2H), 1.32-1.30 (m, 4H), 0.88 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 148.3, 143.1, 134.8, 129.1, 128.9, 128.7, 128.0, 127.9, 125.6, 119.3, 54.2, 35.7, 31.5, 31.1, 22.6, 14.1 ppm.

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole (5i)^[3] White solid, mp: 156-157 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 8.20$ (d, J = 8.0 Hz, 2H), 7.81-7.79 (m, 3H), 7.44-7.39 (m, 4H), 7.35-7.32 (m, 1H), 5.68 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 148.6$, 148.0, 141.8, 130.1, 128.9, 128.6, 128.5, 125.7, 124.3, 119.9, 53.2 ppm.

1-Octyl-4-phenyl-1H-1,2,3-triazole (**5j**)^[3] White solid, mp: 78-79 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.83 (d, *J*=8.0 Hz, 2H), 7.75 (s, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.0 Hz, 1H), 4.37 (t, *J* = 8.0 Hz, 2H), 4.93 (t, *J* = 8.0 Hz, 2H), 1.33-1.26 (m, 10H), 0.89-0.86 ppm (m, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 147.7, 130.7, 128.8, 128.1, 125.7, 119.5, 50.5, 31.7, 30.4, 29.1, 29.0, 26.5, 22.6, 14.1 ppm.

1-Hexyl-4-phenyl-1H-1,2,3-triazole (**5k**)^[3] White solid, mp: 62-63 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.83 (d, *J* = 8.0 Hz, 2H), 7.75 (s, 1H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.0 Hz, 1H), 4.37 (t, *J* = 8.0 Hz, 2H), 1.94-1.91 (m, 2H), 1.32 (s, 6H), 0.88 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 147.7, 130.7, 128.8, 128.1, 125.7, 119.5, 50.4, 31.2, 30.3, 26.2, 22.4, 14.0 ppm.

1-Phenethyl-4-phenyl-1H-1,2,3-triazole (**51**)^[3] White Solid, mp: 124-126 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.76 (d, *J* = 4.0 Hz, 2H), 7.47 (s, 1H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.32-7 24 (m, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.60 (t, *J* = 8.0 Hz, 2H), 3.22 ppm (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 147.5, 137.1, 130.7, 128.9, 128.9, 128.8, 128.1, 127.2, 125.7, 120.0, 51.7, 36.8 ppm.

1-Ethyl-4-phenyl-1H-1,2,3-triazole (**5m**)^[6] White solid, mp: 53–55 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.83 (d, *J* = 8.0 Hz, 2H), 7.77 (s, 1H), 7.43 (t, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 1H), 4.46 (q, *J* = 8.0 Hz, 2H), 1.60 ppm (t, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 147.8, 130.7, 128.9, 128.1, 125.7, 119.0, 45.4, 15.6 ppm.

1,4-Diphenylbuta-1,3-diyne (**7a**)^[5] White solid, mp 82-84 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.53$ (dd, $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 5H), 7.37-7.31 ppm (m, 5H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 132.5$, 129.2, 128.5, 121.8, 81.6, 74.0 ppm.

1,4-Bis(4-ethylphenyl)buta-1,3-diyne (7b)^[7] White solid, mp: 96-97 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.43 (d, *J* = 8.0 Hz, 4H), 7.15 (d, *J* = 4.0 Hz, 4H), 2.64 ppm (q, *J* = 8.0 Hz, 4H), 1.22 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 145.8, 132.5, 128.1, 119.1, 81.6, 73.6, 29.0, 15.3 ppm.

1,4-bis(4-fluorophenyl)buta-1,3-diyne (7c)^[8] White solid, mp 192-193 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.53-7.49 (m, 4H), 7.04 (t, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 164.3, 161.8, 134.6, 134.5, 117.9, 116.0, 115.8, 80.4, 73.6 ppm.

1,4-Bis(4-methoxyphenyl)buta-1,3-diyne (7d)^[8] White solid, mp: 143-144 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.46 (d, *J* = 8.0 Hz, 4H), 6.85 (d, *J* = 8.0 Hz, 4H), 3.82 ppm (s, 6H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 160.3, 134.1, 114.2, 114.0, 81.3, 73.0, 55.4 ppm.

1,4-Bis(4-propylphenyl)buta-1,3-diyne (**7e**)^[7] White solid, mp: 107-108 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.42 (d, *J* = 8.0 Hz, 4H), 7.13 (d, *J* = 8.0 Hz, 4H), 2.51 (t, *J* = 8.0 Hz, 4H), 1.62 (q, *J* = 8.0 Hz, 4H), 0.92 ppm (t, *J* = 8.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 144.3, 132.4, 128.7, 119.1, 81.6, 73.6, 38.1, 24.3, 13.8 ppm.

1,4-Bis(4-butylphenyl)buta-1,3-diyne (7f)^[5] White solid, mp: 66-67 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.42 (d, *J* = 8.0 Hz, 4H), 7.12 (d, *J* = 8.0 Hz, 4H), 2.59 (t, *J* = 8.0 Hz, 4H), 1.57 (quint, *J* = 8.0 Hz, 4H), 1.33 (q, *J* = 8.0 Hz, 4H), 0.91 ppm (t, *J* = 8.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 144.5, 132.5, 128.6, 119.1, 81.7, 73.6, 35.8, 33.4, 22.4, 14.0 ppm.

1,4-Bis(4-pentylphenyl)buta-1,3-diyne (**7g**)^[7] White solid, mp 86-87 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.41$ (d, J = 8.0 Hz, 4H), 7.12 (d, J = 8.0 Hz, 4H), 2.58 (t, J = 8.0 Hz, 4H), 1.58 (quintet, J = 8.0 Hz, 4H), 1.33-1.28 (m, 8H), 0.88 ppm (t, J = 4.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 144.5$, 132.5, 128.6, 119.1, 81.7, 73.6, 36.0, 31.5, 30.9, 22.6, 14.1 ppm.

1,4-Bis(4-(tert-butyl)phenyl)buta-1,3-diyne (7h)^[9] White solid, mp: 209-210 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.37 (d, *J* = 8.0 Hz, 4H), 7.26 (d, *J* = 8.0 Hz, 4H), 1.22 ppm (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 152.6, 132.3, 125.5, 118.9, 81.6, 73.6, 34.9, 31.2 ppm.

3,3'-(buta-1,3-diyne-1,4-diyl)dianiline (**7i**)^[10] Black Solid, mp: 94-96 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.10 (t, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 4.0 Hz, 2H), 6.81 (t, *J* = 4.0 Hz, 2H), 6.68 (dd, *J_a* = 4.0 Hz, *J_b* = 8.0 Hz, 2H), 3.12-3.10 ppm (m, 4H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 146.3, 129.4, 123.0, 122.5, 118.4, 116.3, 81.7, 73.4 ppm.

Benzophenone (9a)^[11] White oli, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 7.72-7.70$ (m, 4H), 7.51-7.48 (m, 2H), 7.39 ppm (t, J = 8.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 196.77$, 137.62, 132.43, 130.07, 128.30 ppm.

1-(1,3-Diphenylprop-2-yn-1-yl)piperidine (14a)^[12] Pale yellow oily liquid, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.55 (d, *J* = 8.0 Hz, 2H), 7.44-7.42 (m, 2H), 7.28-7.17 (m, 6H), 4.71 (s, 1H), 2.48 (s, 4H), 1.53-1.48 (m, 4H), 1.36-1.34 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 137.6, 130.8, 127.5, 127.2, 127.0, 126.4, 122.3, 86.8, 85.0, 61.3, 49.7, 25.1, 23.4 ppm.

1-(1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-yl)piperidine (14b)^[12] Yellow oily liquid, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.57 (d, *J* = 8.0 Hz, 2H), 7.52-7.49 (m, 2H), 7.32-7.30 (m, 5H), 4.75 (s, 1H), 2.53 (s, 4H), 1.62-1.52 (m, 4H), 1.45-1.42 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 137.4, 133.2, 131.9, 129.9, 128.4, 128.2, 123.1, 88.3, 85.4, 61.8, 50.7, 26.2, 24.4 ppm.

1-(1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-yl)piperidine (**14c**)^[12] Dark yellowish oily liquid, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.54-7.49 (m, 4H), 7.31-7.29 (m, 3H), 6.88 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 1H), 3.78 (s, 3H), 2.55 (s, 4H), 1.62-1.54 (m, 4H), 1.44-1.43 ppm (m, 2H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 159.0, 131.8, 130.7, 129.7, 128.3, 128.1, 123.4, 113.4, 87.7, 86.5, 61.8, 55.3, 26.2, 24.5 ppm.

3,4-Dimethoxybenzaldehyde (16a)^[13] White solid, mp: 40-41 °C, ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 9.86$ (s, 1H), 7.47 (dd, $J_a = 4.0$ Hz, $J_b = 8.0$ Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 3.96 ppm (d, J = 8.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 25 °C) $\delta = 190.8$, 154.4, 149.5, 130.0, 126.7, 110.4, 108.8, 56.1, 55.9, 55.9 ppm.

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

140 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

Value

5.56 -115.59 -115.62 -115.65 -115.68 -115.71 -115.77 -115.80 -115.83 -115.86 -115.89 -115.92 f1 (ppm)

10 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

7. References

^[1] M. Li, J. Yang, Y. Gu, Adv. Synth. Catal. 2011, **353**, 1551-1564.

^[2] M. Li, H. Li, T. Li, Y. Gu, *Org. Lett.* 2011, **13**, 1065.

^[3] L. Huang, W. Liu, J. Wu, Y. Fu, K. Wang, C. Huo, Z. Du, *Tetrahedron Lett.* 2014, **55**, 2312-2316.

- ^[4] J. M. Pérez, R. Cano, D. J. RamÓ n, *RSC Adv.* 2014, 4, 23943.
 ^[5] S. Sun, R. Bai, Y. Gu, *Chem. Eur. J.* 2014, 20, 549-558.
- ^[6] C. Zhang, B. Huang, Y. Chen, D. -M. Cui, New J. Chem. 2013, 37, 2606.
- ^[7] X. Niu, C. Li, J. Li, X. Jia, *Tetrahedron Lett.* 2012, **53**, 5559-5561.
- ^[8] Y. Ren, M. Li, J. Yang, J. Peng, Y.Gu, *Adv. Synth. Catal.* 2011, **353**, 3473-3484.
 ^[9] D. -X. Liu, F. -L. Li, H. -X. Li a, J. Gao, J.-P. Lang, *Tetrahedron*, 2014, **70**, 2416-2421.
- ^[10] Y. Liu, C. Wang, X. Wang, J. -P. Wan, *Tetrahedron Lett.* 2013, **54**, 3953-3955.
 ^[11] K. C. Weerasiri, A.E.V. Gorden, *Tetrahedron*. 2014, **70**, 7962-7968.
- ^[12] B. J. Borah, S. J. Borah, L. Saikia, D.K. Dutta, *Catal. Sci. Technol.* 2014, 4, 1047.
- ^[13] T. X. T. Luu, T. T. Lam, T. N. Le, F. Duus, *Molecules*. 2009, **14**, 3411-3424.