A novel, efficient, and recyclable biocatalyst for Michael additions and its iron (III) complex as promoter for alkyl oxidation reactions

K. D. Khalil, ${ }^{a, b}$ E. I. Ibrahim, ${ }^{a}$ and F. A. Al-Sagheer ${ }^{a, *}$

${ }^{a}$ Chemistry Department; Faculty of Science; University of Kuwait; P.O. Box 5969; Safat; 13060 Kuwait.
${ }^{b}$ Chemistry Department; Faculty of Science; Cairo University; Giza 12613, Egypt.

* Corresponding author. E-mail address: f.alsagheer@ku.edu.kw (F. A. Al Sagheer).

Supporting Data

Apparatus and Instrumentation

Melting points were recorded on Gallenkamp apparatus and are reported uncorrected. The Fourier Transform Infrared (FTIR) spectra were recorded in KBr pellets on a JASCO FT-IR-6300, system at a resolution of $4 \mathrm{~cm}^{-1}$ ranging 400-4000 cm^{-1}. NMR measurements were made using a Bruker DPX spectrometer, at 600 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 125 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$, in DMSO- d_{6} as solvent using TMS as internal standard. Solid state NMR spectra were recorded at 600 MHz Bruker Avance II spectrometer, 150 MHz for ${ }^{13} \mathrm{C}$ NMR. Mass spectra were measured on a GCMS DFS-Therm spectrometer, with EI 70 eV . Elemental analyses were made by means of ELEMENTAR-VARIO MICROCUBE Elemental Analyzer.

1. Application of Cs-g-PCPA, graft copolymer, against unmodified chitosan beads, as a heterogeneous basic catalyst for Michael addition reactions

1.1 Reaction of $\mathbf{3}$ with dimedone $\mathbf{4}$

Mixtures of benzylidene-malononitrile 3 ($1.54 \mathrm{~g}, 10.0 \mathrm{mmol}$) with dimedone 4 (10.0 mmol) in the presence of 50 mL absolute ethanol were stirred at reflux for 3 h . The solution contained 10% wt. of the catalyst (Method A using chitosan beads and Method B using Cs-g-PCPA ($\mathrm{G} \%=64 \%$) beads). The solid product formed in this process was separated by filtration and recrystallized from ethanol.

The compound was obtained as colorless crystals; m.p. $230-231^{\circ} \mathrm{C}$; Lit. ${ }^{1} 233-234^{\circ} \mathrm{C}$. IR (KBr): $v=1691(\mathrm{C}=\mathrm{O}), 2220(\mathrm{CN}), 3341,3420\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta=$ $0.96\left(\mathrm{~s}, ~, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.09-2.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.14 (s, 1H, CH, C-4 pyran), 7.08 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), $7.16-7.29$ (m, 5H, phenyl-H); ${ }^{13} \mathrm{C}$ NMR
 $\left(\mathrm{CH}_{2}\right), 59.6\left(\mathrm{CH}_{2}\right), 112.9,118.7(\mathrm{CN}), 126.0,126.7,127.8,143.8,158.1,162.7$ (aromatic carbons), 195.0 (C=O); MS, m/z (\%), 294.1 (M+, 29), 217.1 (66), 55.1 (100). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.36; H, 6.10; N, 9.43. \% Yields: Method A (Cs beads; \%Yield $=75$), Method B $(\mathrm{Cs}-~ g-P C P A$ beads; $\%$ Yield $=95)$.

1.2 Reaction of $\mathbf{3}$ with Barbituric and thiobarbituric acids

Mixtures of benzylidene-malononitrile $\mathbf{3}(10.0 \mathrm{mmol})$ and barbituric $\mathbf{6 a}$ and thiobarbituric acid $\mathbf{6 b}(10.0 \mathrm{mmol})$ in the presence of 50 mL absolute ethanol were stirred at reflux for 3 h. The solutions contained $10 \% \mathrm{wt}$ of the catalyst (Method A using chitosan beads and Method B using Cs-g-PCPA ($\mathrm{G} \%=64 \%$) beads). The solid products formed in these processes were separated by filtration and recrystallized from ethanol.

7-amino-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6carbonitrile 7a

This compound was obtained as Pale yellow crystals; m.p. $207^{\circ} \mathrm{C},{ }^{2,3} \operatorname{IR}(\mathrm{KBr}): v=1686$, $1715(\mathrm{C}=\mathrm{O}), 2190(\mathrm{CN}), 3305,3390\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta=4.24(\mathrm{~s}, 1 \mathrm{H}$, H-4), 7.08 (s, 2H, NH2), 7.13 - 7.34 (m, 5H, Phenyl), 11.51 (s, 1H, NH), 12.07 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR (DMSO-d6): $\delta=33.7,58.0,82.4,117.6$ (CN), 126.8 (p-C, Phenyl), 127.1 (o-C, Phenyl), 128.4 (m-C, Phenyl), 144.8 (i-C, Phenyl), 124.1, 128.7, 129.0, 144.1, 152.2, 158.6 (C-2, C-6), 161.7, 184.3 (C=O); MS, m/z (\%), 282.1 (M+, 70), 77.1 (100). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 59.57; H, 3.57; N, 19.85. Found: C, 59.49; H, 3.47; N, 19.68. \% Yields: Method A (Cs beads; \%Yield = 65), Method B (Cs- g-PCPA; \%Yield = 80).

7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6carbonitrile 7b

This compound was obtained as pale yellow crystals; m.p. $190^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): v=1690$ (C=O), $2192(\mathrm{CN}), 3280,3310\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta=4.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$,
$7.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.11-7.27\left(\mathrm{~m}, 5 \mathrm{H}\right.$, phenyl), $10.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6): $\delta=36.1,59.7,87.7,118.4,118.7,128.9,130.6,142.2,149.0,151.9$, 158.0, 163.1; MS, m/z (\%), 298.1 (M+, 37), 77.1 (100). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, 56.37; H, 3.38; N, 18.78; S, 10.75. Found: C, 56.11; H, 3.16; N, 18.60; S, 10.67. \% Yields: Method A (Cs beads; \%Yield $=60$), Method B (Cs- g-PCPA; \%Yield $=76$).

1.3 Gewald's reaction of 3-oxoalkanenitriles

To mixtures of 3-oxoalkanenitriles $\mathbf{9 a}, \mathbf{b}(4.0 \mathrm{mmol})$ in dry 1,4-dioxane (15.0 mL) were added sulfur ($4.8 \mathrm{mmol}, 154 \mathrm{mg}$), methyl cyanoacetate $\mathbf{1 0}(4.0 \mathrm{mmol}, 396 \mathrm{mg}, 350 \mathrm{~mL}$). The solutions also contained $10 \% \mathrm{wt}$ of the catalyst (Method A using chitosan beads and Method B using Cs-g-PCPA (G\% = 64\%) beads). The mixtures were then stirred at reflux for 8 h , filtered to remove the solid catalyst and extracted with chloroform ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with anhydrous MgSO_{4} and evaporated giving the solid products, which were recrystallized from ethanol.

Methyl-2-amino-5-cyano-4-phenylthiophene-3-carboxylate 11a

This compound was obtained as yellow solid; M.p. $110^{\circ} \mathrm{C}$ (Lit. ${ }^{2,3}$ m.p. $109-111^{\circ} \mathrm{C}$). $\operatorname{IR}(\mathrm{KBr}): v=1668(\mathrm{C}=\mathrm{O}), 2230(\mathrm{CN}), 3310\left(\mathrm{br}, \mathrm{NH}_{2}\right.$ groups) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSOd6): $\delta=3.64$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 5.22 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.29-7.87$ (m, 5 H , Phenyl); ${ }^{13} \mathrm{C}$ NMR (DMSO-d6): $\delta=26.7\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 127.8,130.1,139.6,141.3,151.9,159.0,169.0$; MS, m/z (\%), 259.1 ($\mathrm{M}+$, 12), 195.1 (100). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 60.45$; H, 3.90; N, 10.85; S, 12.41. Found: C, 60.31; H, 3.72; N, 10.57; S, 12.14. \% Yields: Method $\mathrm{A}(\mathrm{Cs}$ beads; $\% \mathrm{Yield}=50)$, Method $\mathrm{B}(\mathrm{Cs}-\mathrm{g}-\mathrm{PCPA} ; \%$ Yield $=75)$.

Methyl-2-amino-5-cyano-4-(1-methyl-1H-pyrrol-2-yl)thiophene-3-carboxylate 11b

This compound was obtained as Orange solid; M.p. $139^{\circ} \mathrm{C}$ (Lit. ${ }^{2,3}$ m.p. $138-142^{\circ} \mathrm{C}$). IR(KBr): $v=1658(\mathrm{C}=\mathrm{O}), 2236(\mathrm{CN}), 3325\left(\mathrm{NH}_{2}\right.$ groups) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta=$ $1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, ester), $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, ester), 4.42 (br s, 2 H , NH_{2}), 6.19 (m, 1H, H-4'), 7.05 (d, 1H, J = $\left.2.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.24$ (d, 1H, J = 2.5, H-3'); ${ }^{13} \mathrm{C}$ NMR (DMSO-d6): $\delta=23.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 29.7\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 105.8,113.1,115.8,116.9,118.5$, 131.0, 145.1, 158.0, 160.3, 169.8; MS, m/z (\%), 262.1 (M+, 18), 195.1 (100). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 55.16 ; \mathrm{H}, 4.24 ; \mathrm{N}, 16.08 ; \mathrm{S}, 12.27$. Found: C, 55.04; H, 3.97; N , 15.87; S, 12.05. \%Yields: Method A (Cs beads; \%Yield $=60 \%$), Method B (Cs- g-PCPA; $\%$ Yield $=80$).

1.4 Reaction of enaminonitriles $\mathbf{1 2 a}, \mathbf{b}$ with dimedone $\mathbf{4}$

Mixtures of the 3-(piperidinyl-1-yl)acrylonitrile 12a, 3-morpholino-acrylonitrile 12b, (10.0 mmol) and dimedone $4(10 \mathrm{mmol})$ in 30 mL absolute ethanol containing the catalyst ($10 \% \mathrm{wt}$.) (Method A using chitosan beads and Method B using Cs-g-PCPA (G\% = 64\%) beads). The mixtures were stirred at reflux for 5 h and filtered to give solids, which were recrystallized from ethanol.

7,7-Dimethyl-2-(piperidine-1-yl)-7,8-dihydroquinolin-5(6H)-one 13a

The compound was obtained as colorless crystals. m.p.: $145^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.38 ; \mathrm{H}, 8.58$; N, 10.84. Found: C, 74.48 ; H, 8.52; N, 10.73. \% Yields: Method A (Cs beads; \%Yield = 80), Method B (Cs-g-PCPA; \%Yield = 90). The crystal structure data has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 824677.

7,7-Dimethyl-2-morpholino-7,8-dihydroquinolin-5(6H)-one 13b

The compound was obtained as colorless crystals. m.p.: $129^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.20; H, 7.74; N, 10.76. Found: C, $69.23 ; \mathrm{H}, 7.68 ; \mathrm{N}, 10.64 . \%$ Yields: Method A (Cs beads; \%Yield = 65), Method B (Cs-g-PCPA; \%Yield = 85). The crystal structure data has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 824678 .

2. Application of the Cs-g-PCPA/Fe(III) chelate as an oxidizing catalyst

(Oxidation of methyl pyridazinone)

Hydrogen peroxide ($30 \%, 5 \mathrm{mmol}$) was added carefully to a pre-heated solutions of methyl pyridazinones $\mathbf{1 4 a}, \mathbf{b}(1 \mathrm{mmol})$ in glacial acetic acid (5 mL) containing $10 \% \mathrm{wt}$ of the $\mathbf{C s}-\boldsymbol{g}-\mathbf{P C P A}(\mathbf{G}=\mathbf{6 4 \%} \mathbf{)} / \mathbf{F e}(\mathbf{I I I})$ chelate. The mixtures were then stirred at reflux until thin layer chromatography indicated that the reactions were complete. The crude product mixtures were poured into 20 mL ice/water mixture and an stirred for 30 min . Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave organic layers that were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield analytically pure products $\mathbf{1 5 a}, \mathbf{b}$.

7-amino-2-phenylfuro[3,4-d]pyridazin-1(2H)-one 15a

The compound was obtained as yellow powder. (\%Yield: 72%; m.p. $198^{\circ} \mathrm{C}$). IR $(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): v=3350$ and $3330\left(\mathrm{NH}_{2}\right), 1660(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO_d6, $\delta=6.07(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.46 (s, 1 H , pyridazinone), 7.51 (m, 5 H , phenyl), 8.14 (s, 1 H , furan). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6, $\delta=114.1,121.6,126.8,130.7,131.2,139.9,140.8,144.0,147.2$ (aromatic carbons), $168.2(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 227.1(\mathrm{M}+, 12), 77.1(100)$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 63.43; H, 3.99; N, 18.49. Found: C, 63.28; H, 3.78; N, 18.29.

7-amino-2-(4-chlorophenyl)furo[3,4-d]pyridazin-1(2H)-one 15b

The compound was obtained as pale yellow powder. (\%Yield: 66%; m.p. $215^{\circ} \mathrm{C}$). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=3360$ and $3330\left(\mathrm{NH}_{2}\right), 1668(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO_d6, $\delta=$ $6.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{o}-\mathrm{H}, J=8.00 \mathrm{~Hz}$, aryl), $7.69(\mathrm{~d}, 2 \mathrm{H}, \mathrm{m}-\mathrm{H}, J=8.00 \mathrm{~Hz}$, aryl), 8.26 (s, 1 H , furan). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6), $\delta=113.1,124.4,126.9,128.6$, 129.0, 133.1, 139.1, 151.7, 155.9 (aromatic carbons), 171.9 (C=O). MS (m/z (\%): 261.1 $(\mathrm{M}+, 4), 111.1(100)$. Accurate Mass; $261.0298\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Cl}_{1}\right)$.

References:
[1] F. H. Ali Bamanie, A. S. Shehata, M. A. Moustafa and M. M. Mashaly, Journal of American Science, 2012, 8, 481.
[2] Z. Puterova, A. Andicsová and D. Végh, Tetrahedron, 2008, 64, 11262.
[3] Z. Puterová, A. Krutošiková and D. Végh, ARKIVOC, 2010(i), 209.

